Abstract:
The present disclosure relates to a clamp-on ultrasonic sensor for an ultrasonic flow rate measuring device and to an ultrasonic flow rate measuring device comprising at least one clamp-on ultrasonic sensor according to the present disclosure. The clamp-on ultrasonic sensor is designed to generate at least one lamb wave mode in a measuring tube wall of a measuring tube of the ultrasonic flow rate measuring device. To ensure the use of the clamp-on ultrasonic sensor on different types of measuring tubes, the clamp-on ultrasonic sensor comprises a coupling element, which coupling element is adapted to a respective type of measuring tube.
Abstract:
An ultrasonic flow meter comprising: a measurement pipe, which has a measurement pipe wall, at least in some parts a basic shape having a rotationally symmetric or polygonal cross-section, and a straight measurement pipe axis; a transmitter for transmitting an acoustic signal on a first signal path; and a receiver for receiving the acoustic signal on the first signal path; The measurement pipe has a plurality of reflection surfaces, by which the acoustic signal on the first signal path is reflected multiple times, and wherein the reflection surfaces are integrally formed from the measurement pipe wall, the reflection surfaces for reflecting the acoustic signal being designed in such a way that one or more of the reflection surfaces at least partially protrude into the basic shape of the measurement pipe and one or more of the reflection surfaces project outward at least from the basic shape of the measurement pipe.
Abstract:
A method for operating an ultrasonic measuring device, which includes: an arrangement of ultrasonic transducers for emitting and receiving ultrasonic signals along at least two signal paths through a fluid, wherein the arrangement is held by a holding apparatus having at least one wall, wherein sections of the signal paths run through at least one of the at least one wall, wherein signal path sections of at least two signal paths in the fluid are of different length; and an electronic measuring/operating circuit configured to perform the method of, in a first method step, comparing intensities of ultrasonic signals along signal paths having signal path sections of different length in the fluid and, in a second method step, determining a damping property of the fluid and an acoustic coupling property between the wall and the fluid therefrom.
Abstract:
An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.
Abstract:
An ultrasonic transducer arrangement for a clamp-on ultrasonic, flow measuring point includes a plurality of ultrasonic transducers, each adapted to radiate ultrasonic signals into the measuring tube and/or to receive ultrasonic signals emerging from the measuring tube, wherein a first group of first ultrasonic transducers is arranged on a first side of the measuring tube, and a second group of second ultrasonic transducer is arranged on a second side of the measuring tube opposite the first side, wherein at least one first/second ultrasonic transducer is adapted to receive ultrasonic signals of at least one second/first ultrasonic transducer, respectively, wherein adjoining ultrasonic transducers of the first group have, in each case, first separations from one another, and wherein adjoining ultrasonic transducers of the second group have, in each case, second separations from one another.
Abstract:
A coupling element for an ultrasonic transducer, which comprises a first recess provided for the arrangement of a piezoelectric element and comprising a terminal base surface in which an ultrasound signal generated by the piezoelectric element can be fed into the coupling element. The coupling element comprising inside the first recess one or a plurality of stops, each of which comprises at least one stop surface which extends along a plane, the plane extending parallel to the base surface of the first recess, and there being defined between this plane and the base surface a space for accommodating material for an acoustic adaptation layer. The invention further concerns an ultrasonic transducer and an ultrasonic flow meter.
Abstract:
An ultrasonic, flow measuring device, comprising a measuring tube having a straight measuring tube axis, a transmitter for sending an acoustic signal on a first signal path, a receiver for receiving the acoustic signal on the first signal path and a number of reflection surfaces, on which the acoustic signal is reflected at least once on the first signal path, wherein minimum separations of at least three subsections from the measuring tube axis lie in the range 0.4-0.6 r, wherein r is the inner radius of the measuring tube.
Abstract:
The present disclosure relates to an ultrasonic transducer arrangement of a clamp-on ultrasonic, flow measuring point having a plurality of clamp-on ultrasonic transducers, wherein the arrangement is configured to be applied on measuring tubes of various diameters, without necessitating new orienting of the ultrasonic transducers of the ultrasonic transducer arrangement.
Abstract:
An ultrasound instrument for detecting a measured value of a medium includes a measurement chamber having a chamber wall and a longitudinal axis; a pair of ultrasound transducers configured to transmit ultrasound signals along a signal path between ultrasound transducers of the pair through the measurement chamber and to receive ultrasound signals, wherein the signal path includes a signal reflection on a reflection surface, wherein the chamber wall in a region of the reflection surface opposite a first chamber side is configured to prevent a reflection of an ultrasound signal on a chamber outer surface of the chamber wall in the direction of the signal path, wherein the chamber wall has, in the region of the reflection surface, a maximum wall thickness which is at least a factor of 1.5 greater than a Rayleigh wavelength, associated with a central frequency, of the ultrasound signal in the chamber wall.
Abstract:
A coupling element for an ultrasonic transducer, which comprises a first recess provided for the arrangement of a piezoelectric element and comprising a terminal base surface in which an ultrasound signal generated by the piezoelectric element can be fed into the coupling element. The coupling element comprising inside the first recess one or a plurality of stops, each of which comprises at least one stop surface which extends along a plane, the plane extending parallel to the base surface of the first recess, and there being defined between this plane and the base surface a space for accommodating material for an acoustic adaptation layer. The invention further concerns an ultrasonic transducer and an ultrasonic flow meter.