Abstract:
Disclosed is an optical artificial neural network system which includes a first spatial light modulator modulating an incident light to generate a first light having a first optical image, a concave mirror reflecting the first light to generate a second light having a second optical image, a first polarized beam splitter disposed between the first spatial light modulator and the concave mirror, a first quarter wave-plate disposed between the first spatial light modulator and the first polarized beam splitter, a second spatial light modulator generating a third light by modulating the second light reflected by the first polarized beam splitter so as to have a third optical image, a beam splitter disposed between the first spatial light modulator and the first polarized beam splitter, and an imaging device.
Abstract:
Disclosed is an optical artificial neural network system which includes an optical hidden layer that receives an input light including input data and generates an output light by performing a linear process and a nonlinear process on the input data, and a light transfer unit that provides the output light to an input of the optical hidden layer, and the optical hidden layer performs the linear process and the nonlinear process based on the received output light.
Abstract:
The present invention relates to a shape-variable electronic device and an operation method of the same and, more specifically, the shape-variable electronic device includes: a substrate having a cell region; a light source unit on the cell region; and a flexible layer vertically spaced apart from the light source unit. The flexible layer includes an actuator part that changes a shape of the flexible layer, and the actuator part includes: a photo-thermal response part that receives light emitted from the light source unit and generates thermal energy; a deformation part which receives the thermal energy from the photo-thermal response part and of which mechanical stiffness is reduced; and a top electrode and a bottom electrode on both surfaces of the deformation part, respectively.
Abstract:
Provided are a composition for a light transmittance control film, and a light transmittance control film. According to the inventive concept, the light transmittance control film includes a matrix part including a copolymer and a polymer chain which is grafted to the copolymer; and a dispersed part including a polymer derived from a first monomer, and are provided in the matrix part, wherein the polymer chain is derived from the first monomer, first light transmittance is shown while external force is applied, and second light transmittance which is greater than the first light transmittance may be shown after the external force is removed.
Abstract:
An optical waveguide for optical interconnection including a polymer sheet comprising a crosslinked product of a prepolymer, the prepolymer prepared by condensation reaction between a first compound represented by the formula Ar—H, where Ar comprises (a) a crosslinkable moiety at one end, (b) a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and (c) one or two repeating units selected from the group consisting of: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound consisting of an aromatic moiety.
Abstract translation:一种用于光学互连的光波导,其包括聚合物片,其包含预聚物的交联产物,所述预聚物通过由式Ar-H表示的第一化合物之间的缩合反应制备,其中Ar包含(a)一端的可交联部分, b)选自-O - , - S - , - COO - , - CO - , - SO 2 - , - SO 2 - 和-NH-的部分,和(c)一或两个选自 由以下组成:A为碳或氮,X为氢或卤素; 和由芳族部分组成的第二化合物。
Abstract:
Disclosed are an optical device capable of having pulse width reduced and adjusted and a laser resonator including the same. The laser resonator including an optical system that forms a first focusing regime and laser crystals disposed in the first focusing regime includes one or more lenses that form a second focusing regime, and an optical device disposed within the second focusing regime and having high non-linearity. A material having a saturated absorption characteristic may be coated on at least one side of the optical device.
Abstract:
Provided are a composition for a light transmittance control film, and a light transmittance control film. According to the inventive concept, the light transmittance control film includes a matrix part including a copolymer and a polymer chain which is grafted to the copolymer; and a dispersed part including a polymer derived from a first monomer, and are provided in the matrix part, wherein the polymer chain is derived from the first monomer, first light transmittance is shown while external force is applied, and second light transmittance which is greater than the first light transmittance may be shown after the external force is removed.
Abstract:
An embodiment of the inventive concept provides a method of manufacturing a polymer film, the method including: preparing a first copolymer containing a first functional group; preparing a second copolymer containing a second functional group; preparing a first compound containing a third functional group; and performing a cross-linking reaction by mixing the first copolymer, the second copolymer, and the first compound, wherein the cross-linking reaction includes a reaction of the first functional group and the second functional group and a reaction of the second functional group and the third functional group, the first compound includes a polar group and any one group selected from among a vinyl group, an aryl group, and an acrylate group, and the third functional group has reactivity with respect to the second functional group, but does not have reactivity with respect to the first functional group.
Abstract:
An optical waveguide for optical interconnection including a polymer sheet comprising a crosslinked product of a prepolymer, the prepolymer prepared by condensation reaction between a first compound represented by the formula Ar—H, where Ar comprises (a) a crosslinkable moiety at one end, (b) a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and (c) one or two repeating units selected from the group consisting of: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound consisting of an aromatic moiety.
Abstract translation:一种用于光学互连的光波导,其包括聚合物片,其包含预聚物的交联产物,所述预聚物通过由式Ar-H表示的第一化合物之间的缩合反应制备,其中Ar包含(a)一端的可交联部分, b)选自-O - , - S - , - COO - , - CO - , - SO 2 - , - SO 2 - 和-NH-的部分,和(c)一或两个选自 由以下组成:A为碳或氮,X为氢或卤素; 和由芳族部分组成的第二化合物。
Abstract:
Provided are a microlens array film and a display device including the same. The microlens array film includes a first transparent electrode and a second transparent electrode facing each other and a flexible polymer layer placed between the first and the second transparent electrodes. Lenses may be freely deformed by regulating voltages applied to the first and second transparent electrodes.