Abstract:
An apparatus and a method for correcting colors of an image projection device are provided. The method includes: acquiring a photographed image by photographing a sample image projected on projection surface; generating input-output color information for n regions, based on color values of a block in the sample image and corresponding color values of the block in the photographed image; selecting one of the n regions of photographed images as a reference region; generating look-up tables (LUTs) for non-reference regions, based on the reference region and the input and output color information; and correcting colors of input images to be projected by the image projection device using the look-up tables, thereby minimizing color difference of the input images on the projection surface for both intra and inter projection device color correction while simplifying the correction procedure.
Abstract:
Provided is a parallax minimization stitching method and apparatus using control points in an overlapping region. A parallax minimization stitching method may include defining a plurality of control points in an overlapping region of a first image and a second image received from a plurality of cameras, performing a first geometric correction by applying a homography to the control points, defining a plurality of patches based on the control points, and performing a second geometric correction by mapping the patches.
Abstract:
The present specification is related to a method for performing multi-projection and a multi-projection system for minimizing a black offset in a multi-projection environment. The present specification provides the method for performing multi-projection comprising estimating the intensity transfer function (ITF) of a plurality of projectors, calculating an optimal black offset threshold for each of the projectors by using each of the ITFs, and applying the optimal black offset threshold to an image projection by each of the projectors.
Abstract:
Disclosed is an apparatus and method for processing information of multiple cameras. The apparatus for processing information of multiple cameras according to an embodiment of the present disclosure includes: multiple cameras obtaining an image containing at least one object; a location information identification unit identifying location information between the at least one object and one of the multiple cameras, the location information identification unit being provided in each of the multiple cameras, wherein the location information comprises a device identifier identifying the location information identification unit and a location data between the at least one object and one of the multiple cameras; and an image processor processing image information obtained from the multiple cameras by using the location information received from the location information identification unit and converting the device identifier received from the location information identification unit into an object identifier identifying the at least one object.
Abstract:
A method of receiving content in a client is provided. The method may include receiving, from a server, a spatial set identifier (ID) corresponding to a tile group including at least one tile, sending, to the server, a request for first content corresponding to metadata, and receiving, from the server, the first content corresponding to the request.
Abstract:
Disclosed are a method and an apparatus for generating a panoramic image based on an image quality. The method of generating a panoramic image includes extracting a matching point to connect a base image captured by a first camera and a reference image captured by a second camera, geometrically transforming the reference image by determining a homography between the base image and the reference image, determining a change in image quality of the geometrically transformed reference image, and generating a panoramic image in which the geometrically transformed reference image is connected to the base image based on the determined change in image quality.
Abstract:
Provided is an apparatus and method for detecting a key point using a high-order Laplacian of Gaussian (LoG) kernel. The high-order LoG kernel is generated based on an LoG operator which is calculated by sequentially differentiating an LoG operator with respect to x and y of an image. A scale space is generated based on the high-order LoG kernel and the key point is detected by comparing a current pixel in the scale space to pixels adjacent to the current pixel.
Abstract:
An apparatus and a method for displaying a panoramic image using a look-up table (LUT) are disclosed, including generating an LUT may include determining first geometric correction information to transform an input domain pixel coordinate system of an input image to a panorama domain pixel coordinate system of a panoramic image, determining second geometric correction information to transform an output domain pixel coordinate system of an output image of the panoramic image to the panorama domain pixel coordinate system of the panoramic image, determining third geometric correction information to transform the output domain pixel coordinate system of the output image to the input domain pixel coordinate system of the input image based on the first geometric correction information and second geometric correction information, and generating an LUT that maps the output domain pixel coordinate system of the output image to the input domain pixel coordinate system of the input image.
Abstract:
A method of receiving content in a client is provided. The method may include receiving, from a server, a spatial set identifier (ID) corresponding to a tile group including at least one tile, sending, to the server, a request for first content corresponding to metadata, and receiving, from the server, the first content corresponding to the request.
Abstract:
A progressive video streaming apparatus and method based on a visual perception are provided, and the progressive video streaming apparatus may include a gaze detector to detect gaze information including at least one of a location of a focus and a viewing angle of a user, a video playback quality determiner to determine video playback quality layers, based on the detected gaze information, a progressive streaming receiver to request video data and receive the video data, using a visual perception priority based on the detected gaze information, and a visual perception-based player to play back the received video data, by controlling an interactive delay to be reduced below a selected criterion, while reducing a visually recognized quality change in the received video data below another selected criterion.