Abstract:
An optical network unit (ONU) having a power saving function for reducing power consumption in an optical network and a power saving method thereof are provided. The ONU includes a first signal transmitter-receiver unit configured to transmit and receive a signal to and from an optical line terminal, a second signal transmitter-receiver unit configured to transmit and receive a signal to and from customer premises equipment through multiple communication ports, a signal processing unit configured to control a signal to be transmitted and received through the first signal transmitter-receiver unit and the second signal transmitter-receiver unit, and a processor configured to control powers of the first signal transmitter-receiver unit and the signal processing unit according to whether data traffic is received through the plurality of communication ports.
Abstract:
An optical network unit (ONU) having a power saving function for reducing power consumption in an optical network and a power saving method thereof are provided. The ONU includes a first signal transmitter-receiver unit configured to transmit and receive a signal to and from an optical line terminal, a second signal transmitter-receiver unit configured to transmit and receive a signal to and from customer premises equipment through multiple communication ports, a signal processing unit configured to control a signal to be transmitted and received through the first signal transmitter-receiver unit and the second signal transmitter-receiver unit, and a processor configured to control powers of the first signal transmitter-receiver unit and the signal processing unit according to whether data traffic is received through the plurality of communication ports.
Abstract:
A Time Wavelength Division Multiplexing-Passive Optical Network (TWDM-PON) system and a communication link method thereof are provided. The communication link method is a method whereby an Optical Network Unit (ONU) which has established communication link to one Optical Line Terminal (OLT) establishes communication link to a different OLT. The ONU receives a wavelength change instruction to change a wavelength thereof to an operating wavelength assigned to the different OLT, and change the wavelength in response to the wavelength change instruction to synchronize to a downstream signal of the operating signal. In addition, the ONU receives an upstream discovery grant signal from the different OLT, and transmits an acknowledgement message to notify the receipt of the upstream discovery grant signal, so that the ONU establishes communication link to the different OLT.
Abstract:
Provided is a method of selecting a wavelength of an optical network unit including selecting a pre-loaded default wavelength as an available wavelength candidate or the wavelength that has been changed when a preset wavelength changing condition is satisfied as the available wavelength candidate, acquiring frame synchronization for a downstream signal having the same wavelength as the selected available wavelength candidate, and transmitting a registration request message to an optical line terminal (OLT) from which the downstream signal has been transmitted when the frame synchronization is acquired, assigning the available wavelength candidate to an available wavelength used for communication with the OLT and registering the terminal in the OLT when a registration allowance message is received from the OLT.
Abstract:
A wavelength tuning time measurement apparatus and method for a multi-wavelength passive optical network (MW PON) are provided. The wavelength tuning time measurement apparatus for measuring a wavelength tuning time of a wavelength-variable light source included in the MW PON system includes an optical filter configured to pass only light of a certain wavelength bandwidth and a photo detector configured to sense light passing through the optical filter. The wavelength tuning time is a time taken from a time when a wavelength change signal is transferred to the wavelength-variable light source, to a time when light starts to be successively sensed by the photo detector.
Abstract:
An optical layer monitoring apparatus and method thereof are provided. According to an embodiment of the present invention, an optical layer monitoring apparatus including an optical time domain reflectometer (OTDR) function so as to monitor an optical path of a passive optical network (PON), and a method for improving accuracy of measured monitoring results using the optical layer monitoring apparatus are provided. Therefore, it is possible to enable a user to continuously detect distortion or attenuation along the optical path, and to quickly recover from the distortion or attenuation along the optical path when distortion or attenuation is detected.
Abstract:
A multi-channel transmitter optical sub-assembly (TOSA) is provided. The multi-channel TOSA includes a stem including a sub-mount, a plurality of light sources mounted on the sub-mount, a common ground pad disposed at the sub-mount and connected to ground electrodes of the light sources in common, a common lead pin installed at the stem, and connected to the common ground pad, and a thermistor mounted on the sub-mount along with the light sources.