Abstract:
Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device.
Abstract:
Provided is a distributed Bragg reflector tunable laser diode including a substrate provided with a gain section having an active waveguide from which a gain of laser light is obtained and a distributed reflector section having a passive waveguide connected to the active waveguide, wherein the distributed reflector section includes gratings disposed on or under the passive waveguide, a current injection electrode disposed on the passive waveguide and configured to provide a current into the passive waveguide to electrically tune a wavelength of the laser light, and a heater electrode disposed on the current injection electrode and configured to heat the passive waveguide to thermally tune the wavelength of the laser light, wherein the gratings, the current injection electrode, and the heater electrode vertically overlap each other.
Abstract:
Disclosed are a laser radar system and a method for acquiring an image of a target, and the laser radar system includes: a beam source to emit the laser beam; a beam deflector disposed between the beam source and the target, and configured to deflect the laser beam emitted from the beam source in a scanning direction of the target as time elapses; and an optical detector configured to detect the laser beam reflected from the target, which is provided a plurality of beam spots having a diameter DRBS; and a receiving optical system disposed between the target and the optical detector and configured to converge the laser beam reflected from the target, and the optical detector includes a detecting area having a diameter DDA that satisfies an equation of √{square root over (2)}×PRBS+2×DRBS≦DDA≦2×Dlens and an equation of (4/π)×λ×F_number
Abstract:
An avalanche photodiode according to the inventive concept includes a substrate, light absorption layers on the substrate, clad layers on the light absorption layers, and active regions in the clad layers. The light absorption layers, the clad layers, and the active regions constitute unit cells. Each of the unit cells has a fan-shape.
Abstract:
Provided is a Mach-Zehnder optical modulator. The optical modulator thereof includes an input waveguide on one side of a substrate, an output waveguide on the other side of the substrate, an optical power splitter between the input waveguide and the output waveguide, an optical power combiner between the optical power splitter and the output waveguide, branch waveguides between the optical power splitter and the optical power combiner, and electrodes provided on the outer periphery of the branch waveguides and between the branch waveguides, and multi-mode interferers provided between the electrodes, and connected in series to the branch waveguides.
Abstract:
An optical device according to the embodiment of the inventive concept includes a waveguide path including a light generation region, a wavelength variable region, and a light modulation region, a first light waveguide layer provided in the light generation region to generate light, a second light waveguide layer provided in the wavelength variable region and connected to the first light waveguide layer, a ring-shaped third light waveguide layer provided in the light modulation region and connected to the second light waveguide layer, and first and second light modulation electrodes spaced apart from each other with the light modulation region therebetween. Here, the first light modulation electrode, the third light waveguide layer, and the second light modulation electrode vertically overlap each other.
Abstract:
Provided is a laser diode and a method for manufacturing the same. The diode includes a substrate including a DBR region having a channel hole, an active region, and a phase shift region, an optical waveguide provided on the substrate and extending from the active region to the DBR region, a lower insulation layer disposed on the optical waveguide, upper electrodes disposed on the lower insulation layer, and a heat blocking layer disposed in the channel hole of the DBR region and thermally separating the optical waveguide from the substrate.
Abstract:
Provided is a laser device according to embodiments of the inventive concept comprising a substrate including a gain region, a phase control region, and a tuning region arranged along a first direction, the substrate having an air gap which extends from the phase control region to the tuning region, an upper clad layer on the substrate, a waveguide structure extending in the first direction between the upper clad layer and the substrate, a first upper electrode disposed on the upper surface of the upper clad layer of the tuning region, and a lower electrode disposed on a lower surface of the substrate and extending from the gain region to the tuning region, wherein the air gap may have a larger width than the waveguide in a second direction crossing the first direction.
Abstract:
An optical apparatus includes a cooling device with a lower clad disposed thereon; a waveguide disposed on the lower clad and including an active waveguide to define a gain section and a passive waveguide to define a wavelength-tunable section; gratings disposed in the lower clad of the wavelength-tunable section; an upper clad disposed on the waveguide; a first upper electrode disposed on the upper clad of the gain section; and a second upper electrode disposed on the upper clad of the wavelength-tunable section. The lower clad of the wavelength-tunable section has a recess region to expose an upper surface of the cooling device, the recess region forming an air gap-having a height of 10 μm to 80 μm from the upper surface of the cooling device. The gratings are formed in a depth of at least 5 μm from a bottom surface of the lower clad of the recess region.
Abstract:
A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 μm and no greater than about 30 μm.