Abstract:
A communication apparatus and method are provided for predicting effects of changes in at least one radio network parameter on a cellular network which comprises a processor which is adapted to: (a) select a source cell in a cellular network; (b) select from among a first plurality of cells being neighbors of that source cell, a second plurality of neighboring cells and define a reference cluster that includes the source cell and the second plurality of cells; and (c) use the reference cluster to predict the effects of carrying out one or more changes in at least one radio network parameter on at least one network performance indicator of the reference cluster, and based on that prediction, establishing an expected impact of the one or more changes in the at least one radio network parameter on a cellular network performance.
Abstract:
A method for improving performance in a residential/community WiFi network is implemented on a self-optimizing network (SON) server and includes: receiving current configuration details and local performance statistics from SON clients installed in access points (APs) in the residential/community WiFi networks, where at least one of the APs is a residential AP configured to provide WiFi connectivity to both authorized users of the residential AP and a community of WiFi users not associated with the residential AP, analyzing at least the current configuration details and local performance statistics to identify performance issues in the residential/community WiFi network, determining remedial actions based on the analyzing, and instructing the access points to perform the remedial actions via the SON clients.
Abstract:
In one example embodiment, a Self Organizing Network (SON) element is provided to communicate with at least one Long-Term Evolution (LTE) wireless network and at least one transport communication network. The SON element is operative to obtain information that relates to updated Neighbor Lists from a plurality of enodeBs (eNBs) belonging to the at least one LTE wireless network, and to convey information that relates to the updated Neighbor Lists obtained, to at least one managing entity belonging to the transport communication network.
Abstract:
In one example embodiment, a Self Organizing Network (SON) element is provided to communicate with at least one Long-Term Evolution (LTE) wireless network and at least one transport communication network. The SON element is operative to obtain information that relates to updated Neighbor Lists from a plurality of enodeBs (eNBs) belonging to the at least one LTE wireless network, and to convey information that relates to the updated Neighbor Lists obtained, to at least one managing entity belonging to the transport communication network.
Abstract:
A method is provided for managing load balance in cellular heterogeneous networks. The method comprises: providing a plurality of spectrum carriers for conveying communication signals to/from a macro cell. At least one of the carriers is a shared carrier for conveying communication signals to/from the macro cell and to/from at least one small cell located at the geographical vicinity of the macro cell, and wherein the shared carrier is characterized in that data is the only type of communication signals being conveyed thereat when the cellular network is under congestion. One or more other spectrum carriers are dedicated carriers adapted to essentially convey voice calls, and wherein user terminals are steered away from dedicated carriers to the shared carrier, so that when a data session is initiated for a user terminal camped on the shared carrier, that session will be conveyed one or more of the small cells.
Abstract:
A method for cross-domain service optimization is implemented on a computing device and includes defining at least one key quality indicator (KQI) target for at least one end-to-end (E2E) service, where the at least one E2E service crosses more than one domain of a communications network, receiving an indication of quality of experience (QoE) for the at least one E2E service, based on the indication of QoE, translating the at least one KQI target to at least one set of service optimization instructions for each domain from among the more than one domain, and for each domain, applying the service optimization instructions.
Abstract:
In one embodiment, a method for optimizing tracking areas for user equipments (UEs) is implemented in a mobile network and includes: defining network slices as a function of UE types, where UEs in the mobile network are associated with the network slices according to the UE types, defining network slice specific tracking areas as groups of one or more mobile base stations according to the network slices; receiving a signal from a given UE from among the UEs at a receiving mobile base station from among the one or more mobile base stations, and paging the given UE in a network slice specific tracking area from among the network slice specific tracking areas, where the receiving mobile base station is in the network slice specific tracking area, and the given UE is associated with the network slice specific tracking area according to an associated UE type from among the UE types.
Abstract:
One example method is provided for dynamic allocation of air interface resources in a cellular network. The method can include at least three wireless cells located within a geographical proximity of each other. The method can include determining, by a central managing entity, one or more classification rules for classifying each of said plurality of mobile devices according to the one or more classification rules. The method can also include providing, by the central management entity, to a group of base stations associated with the at least three cells, information that can include, at least in part, information that relates to the determined one or more classification rules and information that relates to semi-static allocation of blocks of air interface resources for use by one or more specific members of the group of base stations.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
A communication apparatus and method are provided for pre-dieting effects of changes in at least one radio network parameter on a cellular network which comprises a processor which is adapted to: (a) select a source cell in a cellular network; (b) select from among a first plurality of cells being neighbors of that source cell, a second plurality of neighboring cells and define a reference cluster that includes the source cell and the second plurality of cells; and (c) use the reference cluster to predict the effects of carrying out one or more changes in at least one radio network parameter on at least one network performance indicator of the reference cluster, and based on that, prediction, establishing on expected impact of the one or more changes in the at least one radio network parameter on a cellular network performance.