Abstract:
Provided is a projection apparatus that can enhance the efficiency of utilization of RGB laser lights, eliminate positional displacement in projection point caused by spaced-apart fiber cores emitting the laser lights, and detect additional information while projecting an image with the laser lights. The projection apparatus includes a laser light source emitting infrared and RGB laser lights, a fixing device fixing end portions of an infrared-light fiber and colored-light fibers used to transmit the infrared and RGB laser lights, a scanning unit projecting an image on a projection surface by scanning the projection surface with the RGB laser lights emitted from the end portions of the colored-light fibers, a detection unit detecting reflection of the infrared laser light emitted from the end portion of the infrared-light fiber, and a control unit controlling emission of the RGB laser lights from the light source, based on information detected by the detection unit.
Abstract:
Provided is a light source device having optical fiber arrays arranged so that different sets of RGB laser lights are focused at different depth positions, while enhancing the efficiency of light utilization. The light source device includes a plurality of optical devices each of which generate red, green, or blue laser light, a plurality of first, second, and third optical fibers through each of which the red, green, or blue laser light from a corresponding one of the plurality of optical devices is guided, and a fiber bundle combiner which forms a fiber bundle by fixedly holding together end portions of the plurality of first, second, and third optical fibers in such a manner that a plurality of optical fiber sets, each comprising three optical fibers one from the first optical fibers, one from the second optical fibers, and one from the third optical fibers, are stacked in layers.
Abstract:
Provided is a laser module wherein any defective laser device can be isolated by performing burn-in on laser devices mounted on a mounting substrate. The laser module includes laser devices that emit laser light, a driver IC for driving the laser devices, a mounting substrate on which the laser devices and the driver IC are mounted, a common electrode terminal to which a common electrode of the laser devices is connected, individual electrode terminals to which individual electrodes of the laser devices are respectively connected, driver terminals to which the driver IC is connected, and test terminals which are respectively connected to the common electrode terminal and the individual electrode terminals, and to which an external power supply is to be connected when performing burn-in of the laser devices, wherein the number of the laser devices and the number of the test terminals are each larger than the number of the driver terminals.
Abstract:
Provided is a light source device having optical fiber arrays arranged so that different sets of RGB laser lights are focused at different depth positions, while enhancing the efficiency of light utilization. The light source device includes a plurality of optical devices each of which generate red, green, or blue laser light, a plurality of first, second, and third optical fibers through each of which the red, green, or blue laser light from a corresponding one of the plurality of optical devices is guided, and a fiber bundle combiner which forms a fiber bundle by fixedly holding together end portions of the plurality of first, second, and third optical fibers in such a manner that a plurality of optical fiber sets, each comprising three optical fibers one from the first optical fibers, one from the second optical fibers, and one from the third optical fibers, are stacked in layers.
Abstract:
Provided is a laser module wherein any defective laser device can be isolated by performing burn-in on laser devices mounted on a mounting substrate. The laser module includes laser devices that emit laser light, a driver IC for driving the laser devices, a mounting substrate on which the laser devices and the driver IC are mounted, a common electrode terminal to which a common electrode of the laser devices is connected, individual electrode terminals to which individual electrodes of the laser devices are respectively connected, driver terminals to which the driver IC is connected, and test terminals which are respectively connected to the common electrode terminal and the individual electrode terminals, and to which an external power supply is to be connected when performing burn-in of the laser devices, wherein the number of the laser devices and the number of the test terminals are each larger than the number of the driver terminals.
Abstract:
Provided is a projection apparatus that can enhance the efficiency of utilization of RGB laser lights, eliminate positional displacement in projection point caused by spaced-apart fiber cores emitting the laser lights, and detect additional information while projecting an image with the laser lights. The projection apparatus includes a laser light source emitting infrared and RGB laser lights, a fixing device fixing end portions of an infrared-light fiber and colored-light fibers used to transmit the infrared and RGB laser lights, a scanning unit projecting an image on a projection surface by scanning the projection surface with the RGB laser lights emitted from the end portions of the colored-light fibers, a detection unit detecting reflection of the infrared laser light emitted from the end portion of the infrared-light fiber, and a control unit controlling emission of the RGB laser lights from the light source, based on information detected by the detection unit.