Abstract:
Techniques are provided for sending and receiving data communications between an enhanced Quad Small Form-Factor Pluggable (QSFP+) transceiver module and an enhanced Small Form-Factor Pluggable (SFP+) transceiver module. An adapter device is provided that has a first set of signal pins configured to interface with an SFP+ transceiver module and a second set of signal pins is provided that is configured to interface with a QSFP+ host port. A retimer unit is also provided that is configured to modify a 10G signal of a first electrical signal standard associated with the SFP+ transceiver module to a 10G signal of a second electrical standard associated with a QSFP+ transceiver module and to enhance a 10G signal of the second electrical signal standard to a 10G signal of the first electrical signal standard.
Abstract:
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
Abstract:
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
Abstract:
Various implementations disclosed herein include apparatuses, systems, and methods for providing pull tabs for pluggable transceiver modules and/or adaptor modules. A pluggable transceiver module may include a pull tab that may have a visual indicator portion to provide a visual indication of the status of a pluggable transceiver module and/or the status of a network connection. The pluggable transceiver module may also include one or more LEDs, one or more wires, one or more light pipes, one or more latching components, and/or one or more tension components. An adaptor module may include a pull tab that may have a visual indicator portion to provide a visual indication of whether a pluggable transceiver module is compatible with the adaptor module. The adaptor module may also include one or more LEDs, one or more wires, one or more light pipes, one or more latching components, and/or one or more tension components.
Abstract:
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
Abstract:
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
Abstract:
A heat sink mounting configuration is provided that is configured to prevent the heat sink from damaging ball grid arrays (BGA) of an application specific integrated circuit (ASIC) mounted on a printed circuit board (PCB) when the line card is subjected to vibrations and shocks. The heat sink mounting configuration may include a set of screws configured to be at least partially disposed within the apertures of the heat sink to secure the heat sink to the PCB. The mounting configuration includes a resilient member and a spacer disposed around the screws proximate to the apertures. The resilient members are configured to bias the heat sink against the ASIC to maintain the heat sink in contact with the ASIC. The spacers are configured to prevent the heat sink from impacting the ASIC with forces large enough to damage the BGA when the line card is subjected to vibrations and shocks.
Abstract:
Techniques are provided for sending and receiving data communications between an enhanced Quad Small Form-Factor Pluggable (QSFP+) transceiver module and an enhanced Small Form-Factor Pluggable (SFP+) transceiver module. An adapter device is provided that has a first set of signal pins configured to interface with an SFP+ transceiver module and a second set of signal pins is provided that is configured to interface with a QSFP+ host port. A retimer unit is also provided that is configured to modify a 10G signal of a first electrical signal standard associated with the SFP+ transceiver module to a 10G signal of a second electrical standard associated with a QSFP+ transceiver module and to enhance a 10G signal of the second electrical signal standard to a 10G signal of the first electrical signal standard.
Abstract:
An upscaling transceiver module is provided that is configured to provide data connectivity between transceiver modules. The upscaling transceiver module comprises a first connector and a second connector. The first connector is configured to interface with a first port of a host device, and the second connector is configured to interface with a second port of a second host device. The connectors support exchange of 10G signals. The upscaling transceiver module also comprises a multiplexing unit and a demultiplexing unit. The multiplexing unit receives a first and second 10G transmission signals. The multiplexing unit combines the first and second 10G transmission signals into a twenty gigabit per second (20G) transmission signal. The demultiplexing unit obtains a 20G receive signal from a system device and splits the 20G receive signal into first and second 10G receive signals.