摘要:
Provided is a dye-sensitized solar cell. Specifically, the present invention provides a dye-sensitized solar cell which is designed to reduce the production cost, improve productivity and increase energy efficiency by using a carbon electrode as a counter electrode, and a manufacturing method thereof. The dye-sensitized solar cell according to the present invention is characterized by comprising a working electrode, a counter electrode, and an electrolytic layer separating the two electrodes, wherein the counter electrode comprises a carbon electrode formed on a first transparent substrate, wherein the carbon electrode is a conductive transparent carbon electrode. According to the present invention, it is possible to remarkably reduce the production cost by using a relatively low-cost material, i.e. carbon electrode, and improve the solar cell efficiency by preventing oxidation with the electrolytic layer owing to corrosion and oxidation resistance of the carbon electrode.
摘要:
Provided are an organic thin film transistor (OTFT) and a fabrication method thereof, an organic semiconductor device having the OTFT, and a flexible display device having the OTFT. The OTFT includes a substrate, a gate electrode, an insulating layer, an active layer, and a source/drain electrode. The gate electrode may be made of a nanocrystalline carbon layer.
摘要:
A method of selectively positioning nanostructures on a substrate is provided which includes: a first step of forming a photoresist pattern on the substrate and then control the line width of the photoresist pattern in a nano unit to form a nanometer photoresist layer; a second step of forming a protective layer for preventing adsorption of a nano-material in a patter-unformed area on the substrate on which the nanometer photoresist layer has been formed; a third step of removing the photoresist layer formed on the substrate; a fourth step of forming a positively-charged or negatively charged adsorbent layer in the area from which the photoresist layer has been removed; and a fifth step of applying a nano-material-containing solution charged in the opposite polarity of the adsorbent layer to the substrate on which the adsorbent layer has been formed.
摘要:
A method of selectively positioning nanostructures on a substrate is provided which includes: a first step of forming a photoresist pattern on the substrate and then control the line width of the photoresist pattern in a nano unit to form a nanometer photoresist layer; a second step of forming a protective layer for preventing adsorption of a nano-material in a patter-unformed area on the substrate on which the nanometer photoresist layer has been formed; a third step of removing the photoresist layer formed on the substrate; a fourth step of forming a positively-charged or negatively charged adsorbent layer in the area from which the photoresist layer has been removed; and a fifth step of applying a nano-material-containing solution charged in the opposite polarity of the adsorbent layer to the substrate on which the adsorbent layer has been formed.