Abstract:
A system and method for sharing antennas of a wireless communication device is provided. The wireless communication device leverages cellular antennas to improve data throughput by creating a multiple-in, multiple out (MIMO) operation for a wireless local area network (WLAN) connection. Antenna resources are dynamically allocated between the cellular antennas and the wireless antenna to provide improved throughput.
Abstract:
In MIMO systems employing closed loop link adaptation, channel state information reporting can be enhanced using various types of side information, such as scheduling information indicating constraints on the scheduler related to the generation of downlink MIMO signals.
Abstract:
Systems using a transmit precoder codebook designed for a four-transmitter (4Tx) antenna configuration are described. The 4Tx antenna configuration is an attractive option for base stations in cellular network environments due to site-acquiring advantages and robust performance. In an embodiment, the transmit precoder codebook can be used for a variety of transmit antenna configurations and has a high resolution to enable beamforming and/or nulling. In another embodiment, the transmit precoder codebook is a two-component codebook, with a first precoder component signaled at a first frequency and a second precoder component signaled at a second higher frequency.
Abstract:
A system and method for sharing antennas of a wireless communication device is provided. The wireless communication device leverages cellular antennas to improve data throughput by creating a multiple-in, multiple out (MIMO) operation for a wireless local area network (WLAN) connection. Antenna resources are dynamically allocated between the cellular antennas and the wireless antenna to provide improved throughput.
Abstract:
Embodiments provide methods and systems for transmitting an emergency (SOS) message from a user (UE) to a cellular network in a highly robust and energy efficient manner. Specifically, embodiments enable the SOS message to be sent in a synchronous manner despite the asynchronous nature of the network, which significantly enhances the probability of successful reception of the SOS message by at least one base station (eNodeB) of the network. Embodiments further provide highly robust SOS message transmission and reception schemes configured to enhance the successful detection and decoding of the SOS message by at least one base station of the cellular network. In addition, embodiments enable the synchronous transmission of the SOS message to the network without requiring network attachment by the UE. This makes embodiments highly suited for emergency situations in which network coverage is affected and can enable significant and precious power savings at the UE.
Abstract:
In a communications network with carrier aggregation (CA), embodiments enable the network to advertise to a supported wireless device not only whether or not aggregated component carriers allocated to the wireless are intra-band adjacent but further whether or not the allocated component carriers are collocated. Embodiments further enable the wireless to advertise its CA capabilities including the support of adjacent collocated CA and/or non-adjacent collocated CA. Embodiments thus provide systems/methods for the exploitation of special conditions provided by adjacent collocated component carriers to reduce processing complexity and power consumption for certain types of wireless device transmitter/receiver architectures and to support intra-band adjacent CA for other types of UE transmitter/receiver architectures.
Abstract:
A framework for enabling a user equipment (UE) to apply interference suppression processing during network conditions that are favorable to interference suppression or that are known is provided. The framework includes an interference suppression (IS) time and frequency (time/frequency) zone, which can be scheduled by a serving base station and signaled to the UE. In an embodiment, the serving base station coordinates with the interfering base station(s) to create a network condition favorable to interference suppression at the UE during the IS time/frequency zone. In another embodiment, the serving base station opportunistically schedules the IS time/frequency zone for the UE whenever it determines favorable transmission parameters being used or scheduled for use by the interfering base station(s). The UE applies interference suppression processing within the IS time/frequency zone, thereby improving receiver performance. Outside the time/frequency zone, the UE may disable interference suppression processing so as not to degrade receiver performance.
Abstract:
Embodiments enable cooperative transmissions from a group of cells (can include the serving cell and one or more neighboring cells) to a user equipment (UE). The cooperative transmissions emulate Hybrid Automatic Repeat Request (HARQ) transmissions to the UE. Specifically, when the UE is experiencing high interference, the UE's serving cell can create a transmit incremental redundancy (IR) group for the UE, which is used to transmit information in a HARQ-like fashion to the UE. Because interference is reduced, the UE can decode the information at a lower coding rate and higher coding gain.
Abstract:
Systems and methods for establishing transmission format parameters between communication devices are provided. In some aspects, a method includes identifying, by a first base station, a first communication session with a first user equipment. A master set of transmission format parameters is shared between the first base station and the first user equipment. The method also includes assigning a first subset of the master set of transmission format parameters to the first communication session. The first subset is specifically assigned to the first communication session and specifies which of the master set of transmission format parameters is allocated for use in the first communication session. The method also includes transmitting an indicator of the first subset to the first user equipment.
Abstract:
Embodiments enable cooperative transmissions from a group of cells (can include the serving cell and one or more neighboring cells) to a user equipment (UE). The cooperative transmissions emulate Hybrid Automatic Repeat Request (HARQ) transmissions to the UE. Specifically, when the UE is experiencing high interference, the UE's serving cell can create a transmit incremental redundancy (IR) group for the UE, which is used to transmit information in a HARQ-like fashion to the UE. Because interference is reduced, the UE can decode the information at a lower coding rate and higher coding gain.