Abstract:
A system and method for using energy-efficient Ethernet to control energy efficiency in lower layers. In one example, an energy-efficiency control policy in a first Ethernet device can be configured to determine a need for transitioning of at least a part of the first Ethernet device into an energy saving state. Based on such a determination, an energy-efficiency control signal can be transmitted from the first Ethernet device to a first non-Ethernet device. The receipt of the energy-efficiency control signal by the first non-Ethernet device is used to initiate a transition by the first non-Ethernet device into an energy saving state, which in turn may initiate a transition by downstream non-Ethernet devices into an energy saving state. This process creates a single unified energy-efficiency policy domain.
Abstract:
A system, method and apparatus for power saving using burst-mode transmission over point-to-point physical connections. In one embodiment, a physical layer device (PHY) is provided that includes a data detector that is configured to generate a first control signal upon receipt of a non-idle code group over an interface between the PHY and a media access control (MAC) device and to generate a second control signal when all data received from the MAC device has been transmitted by the physical layer device. The PHY also includes a laser for transmission of data over an optical network cable, the laser being configured to perform a first transition from an off state to an on state based on the first control signal, and to perform a second transition from the on state back to the off state based on the second control signal.
Abstract:
A system and method for bandwidth-delay-product (BDP) decoupler. A BDP decoupler mechanism is provided that enables an intermediate network device to facilitate an efficient transfer of traffic from a server to a client. In one embodiment, the intermediate network device can be configured to buffer received data and control the transmission of the buffered data to the client device based on acknowledgment messaging received by the intermediate network device from the client device.
Abstract:
A system and method for carrying control data in a preamble. A control-data bearing preamble is defined to facilitate end-to-end labeling and control-data transport. This control-data bearing preamble provides a unified labeling scheme with minimal overhead, which facilitates greater ease in parsing. The control-data bearing preamble can be converted to/from other control/labeling schemes at the edge of the control-data bearing preamble aware portion of the network.
Abstract:
The present disclosure extends the flow control in a DSL communication system to include a remote back-pressure flow control within a DSL receiver of the DSL communication system. The remote back-pressure flow control can prevent a DSL transmitter of the DSL communication system from overwhelming the DSL receiver. The remote back-pressure flow control is implemented within a receiving network processor (rx-NP) of the DSL receiver to prevent the DSL transmitter from overwhelming the rx-NP.
Abstract:
A system and method for carrying control data in a preamble. A control-data bearing preamble is defined to facilitate end-to-end labeling and control-data transport. This control-data bearing preamble provides a unified labeling scheme with minimal overhead, which facilitates greater ease in parsing. The control-data bearing preamble can be converted to/from other control/labeling schemes at the edge of the control-data bearing preamble aware portion of the network.
Abstract:
A device for pre-emption in passive optical networks may include a first media access control (MAC) module configured to receive a first type of data traffic and transmit the first type of data traffic to a MAC merge module. The device may further include a second media access control (MAC) module configured to receive a second type of data traffic and transmit the second type of data traffic to the MAC merge module. The device may further include the MAC merge module configured to receive the first and second types of data traffic from the first and second MAC modules, respectively, and provide the first and second types of data traffic for transmission over a port. The MAC merge module may be configured to pre-empt the transmission of the first type of data traffic over the port in favor of the second type of data traffic.
Abstract:
A system, method and apparatus for power saving using burst-mode transmission over point-to-point physical connections. In one embodiment, a physical layer device (PHY) is provided that includes a data detector that is configured to generate a first control signal upon receipt of a non-idle code group over an interface between the PHY and a media access control (MAC) device and to generate a second control signal when all data received from the MAC device has been transmitted by the physical layer device. The PHY also includes a laser for transmission of data over an optical network cable, the laser being configured to perform a first transition from an off state to an on state based on the first control signal, and to perform a second transition from the on state back to the off state based on the second control signal.
Abstract:
A system and method for using energy-efficient Ethernet to control energy efficiency in lower layers. In one example, an energy-efficiency control policy in a first Ethernet device can be configured to determine a need for transitioning of at least a part of the first Ethernet device into an energy saving sate. Based on such a determination, an energy-efficiency control signal can be transmitted from the first Ethernet device to a first non-Ethernet device. The receipt of the energy-efficiency control signal by the first non-Ethernet device is used to initiate a transition by the first non-Ethernet device into an energy saving state, which in turn may initiate a transition by downstream non-Ethernet devices into an energy saving state. This process creates a single unified energy-efficiency policy domain.