Abstract:
A pixel in an image sensor can include a photodetector and a storage region disposed in one substrate, or a photodetector disposed in one substrate and a storage region in another substrate. A buried light shield is disposed between the photodetector and the storage region. A sense region, such as a floating diffusion, can be adjacent to the storage region, with the buried light shield disposed between the photodetector and the storage and sense regions. When the photodetector and the storage region are disposed in separate substrates, a vertical gate can be formed through the buried light shield and used to initiate the transfer of charge from the photodetector and the storage region. A transfer channel formed adjacent to, or around the vertical gate provides a channel for the charge to transfer from the photodetector to the storage region.
Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
A sensing device includes a first array of sensing elements, which output a signal indicative of a time of incidence of a single photon on the sensing element. A second array of processing circuits are coupled respectively to the sensing elements and comprise a gating generator, which variably sets a start time of the gating interval for each sensing element within each acquisition period, and a memory, which records the time of incidence of the single photon on each sensing element in each acquisition period. A controller sets, in each of at least some of the acquisition periods, different, respective gating intervals for different ones of the sensing elements.
Abstract:
Methods and apparatus for converting streaming media between different formats. A bridging device for e.g., Camera Serial Interface (CSI) and DisplayPort is disclosed. Both the CSI and DisplayPort technologies use low power mode operation during blanking intervals of a video transmission. However, the CSI interface can wake up in a very short amount of time (e.g., ˜400 ns), but the DisplayPort interface takes significantly longer to perform link training (e.g., ˜1 ms). Various embodiments of the present disclosure use frame signaling trigger to start a wait time interval timer; the wait time interval can be used by the bridge device to wake up the DisplayPort interface ahead of the CSI2 D-PHY interface, thereby ensuring that both links are active at the same time. This “wake-up” technique can greatly reduce the size of buffering memories that are required.
Abstract:
An image sensor includes pixels that accumulate charge during a first integration period and pixels that accumulate charge during shorter second integration periods when an image is captured. The pixels having the shorter second integration period accumulate charge at two or more different times during the first integration period. Charge is read out of the pixels associated with the first integration period at the end of the first integration period, while charge is read out of the pixels having the second integration period at the end of each second integration period.
Abstract:
An optoelectronic system includes a transmit side and a receive side. The transmit side and the receive side each include an oversampled phase locked loop configured to receive a decimated system clock signal. Each phase-locked loop is configured to output a high frequency sampling clock signal that, in the case of the transmit side, may be leveraged to generate an arbitrary current waveform that, in turn, can be delayed by a delay-locked loop before being applied to a current-controlled light emitting element. The receive side can generate a clock signal at the same high frequency as the transmit side and can be configured to trigger a reset of the transmit side so that the high frequency clock signals between the transmit and receive sides are synchronized.
Abstract:
A sensing device includes a first array of sensing elements, which output a signal indicative of a time of incidence of a single photon on the sensing element. A second array of processing circuits are coupled respectively to the sensing elements and comprise a gating generator, which variably sets a start time of the gating interval for each sensing element within each acquisition period, and a memory, which records the time of incidence of the single photon on each sensing element in each acquisition period. A controller sets, in each of at least some of the acquisition periods, different, respective gating intervals for different ones of the sensing elements.
Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
Devices and methods for adjusting an exposure window of a rolling shutter based on a frequency determined from ambient light gathered by a bimodal component are disclosed. Flickering light sources may cause artifacts in captured images, due to interplay between a period of a frequency of ambient light and the exposure window. An image capture device includes a semiconductor component configured to operate in two modes and an exposure window control component configured to compensate for the flickering based on a signal from the light source. In a sensor mode, the semiconductor component may operate to detect the frequency of ambient light. To avoid image artifacts, the frequency of the ambient light is analyzed and an exposure time is adjusted to an integer multiple of the period of the frequency such that exposure is matched to the periodic illumination of the flickering light source.
Abstract:
A pixel in an image sensor can include a photodetector and a storage region disposed in one substrate, or a photodetector disposed in one substrate and a storage region in another substrate. A buried light shield is disposed between the photodetector and the storage region. A sense region, such as a floating diffusion, can be adjacent to the storage region, with the buried light shield disposed between the photodetector and the storage and sense regions. When the photodetector and the storage region are disposed in separate substrates, a vertical gate can be formed through the buried light shield and used to initiate the transfer of charge from the photodetector and the storage region. A transfer channel formed adjacent to, or around the vertical gate provides a channel for the charge to transfer from the photodetector to the storage region.