Abstract:
Provided is a GPS receiver, including: a navigation signal receiving unit receiving navigation signals from satellites; a navigation signal processing unit acquiring position information of each satellite from the received navigation signal and measuring a pseudo-range; a pseudo-range estimating unit determining whether a satellite of which the pseudo-range may be estimated exists among the satellites from which the navigation signals are transmitted in the case where the number of satellites from which the navigation signals are transmitted is 3 or less and estimating the pseudo-range of the determined satellite; and a navigation solution calculating unit calculating a navigation solution by using the measured pseudo-range and the estimated pseudo-range.
Abstract:
Provided is a GPS receiver, including: a navigation signal receiving unit receiving navigation signals from satellites; a navigation signal processing unit acquiring position information of each satellite from the received navigation signal and measuring a pseudo-range; a pseudo-range estimating unit determining whether a satellite of which the pseudo-range may be estimated exists among the satellites from which the navigation signals are transmitted in the case where the number of satellites from which the navigation signals are transmitted is 3 or less and estimating the pseudo-range of the determined satellite; and a navigation solution calculating unit calculating a navigation solution by using the measured pseudo-range and the estimated pseudo-range.
Abstract:
Provided is a method and apparatus for a pseudo range verification of a global navigation satellite system (GNSS) receiver, more particularly, a method and apparatus for the pseudo range verification of the GNSS receiver by comparing the pseudo range for a measurement calculated in the GNSS receiver and the pseudo range for a verification generated depending on a position of the GNSS receiver.
Abstract:
Provided are an apparatus and a method for diagnosing fault and processing data of a satellite ground system. The apparatus and a method can prevent data loss of a satellite, and efficiently operate the satellite ground system using data buffer and penalty method when a temporary fault occurs. Data buffer stores data in fault situation and penalty method imposes high penalty in critical fault and low penalty in minor fault. System is managed according to penalty degree. The apparatus, includes: a satellite data processing and controlling means; a signal transforming means; a fault detecting and controlling means; a state displaying means for displaying a state of the satellite and the system; a penalty managing means for being notified whether the device has fault or not; a data storing means for storing and transmitting the data; and a system recovery supporting means.
Abstract:
Provided is a satellite simulation system based on component-based satellite modeling. The system includes: a user interface unit for receiving simulation control commands and data and parameter required for simulation from a user; a satellite model unit for individually storing information dependant on the satellite, characteristics of the simulation object model and parameter information based on the characteristics, and performing simulation upon receipt of simulation control commands; and a simulation kernel unit for creating a schedule control command for simulation control of the satellite model unit, the onboard simulation unit and the external interface unit by the control command receiving/transmitting from/to the control command/telemetry to satellite control system, performing control and collecting and managing simulation results.
Abstract:
Provided is a method for controlling an attitude of a satellite using target track approximation. The method includes the steps of: a) receiving coordinate information of at least one of target areas; b) generating a target track by approximating a track of a satellite based on the received coordinate information; and c) detecting a location of the satellite on a current track, calculating an attitude angle of the satellite for the target track using the location of the satellite and the location of the target area, and applying the calculated attitude angle of the satellite to control the attitude of the satellite.
Abstract:
Disclosed are an apparatus and a method for guiding a driving route to a destination that accept a user's needs for a driving route as much as possible and promptly reflect traffic information in real time to guide a driver to arrive at his or her destination by using an optimal route.
Abstract:
Provided is a method and apparatus for a pseudo range verification of a global navigation satellite system (GNSS) receiver, more particularly, a method and apparatus for the pseudo range verification of the GNSS receiver by comparing the pseudo range for a measurement calculated in the GNSS receiver and the pseudo range for a verification generated depending on a position of the GNSS receiver.
Abstract:
Provided are an apparatus and a method for diagnosing fault and processing data of a satellite ground system. The apparatus and a method can prevent data loss of a satellite, and efficiently operate the satellite ground system using data buffer and penalty method when a temporary fault occurs. Data buffer stores data in fault situation and penalty method imposes high penalty in critical fault and low penalty in minor fault. System is managed according to penalty degree. The apparatus, includes: a satellite data processing and controlling means; a signal transforming means; a fault detecting and controlling means; a state displaying means for displaying a state of the satellite and the system; a penalty managing means for being notified whether the device has fault or not; a data storing means for storing and transmitting the data; and a system recovery supporting means.