摘要:
A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with π-conjugated conductive polymers, including polyaniline (PANI), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
摘要:
Multifunctional Boron Nitride nanotube-Boron Nitride (BN—BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN—BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN—BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.
摘要:
A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
摘要:
A novel radiation hardened chip package technology protects microelectronic chips and systems in aviation/space or terrestrial devices against high energy radiation. The proposed technology of a radiation hardened chip package using rare earth elements and mulitlayered structure provides protection against radiation bombardment from alpha and beta particles to neutrons and high energy electromagnetic radiation.
摘要:
A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.
摘要:
A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with π-conjugated conductive polymers, including polyaniline (PANI), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
摘要:
A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
摘要:
Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.
摘要:
The invention consists of radiation shielding materials for shielding in the most structurally robust combination against galactic cosmic radiation (GCR), neutrons, and solar energetic particles (SEP). Materials for vehicles, space structures, habitats, landers, rovers, and spacesuits must possess functional characteristics of radiation shielding, thermal protection, pressure resistance, and mechanical durability. The materials are tailored to offer the greatest shielding against GCR, neutrons, and SEP in the most structurally robust combination, also capable of shielding against micrometeoriod impact. The boron nitride nanotube (BNNT) is composed entirely of low Z atoms (boron and nitrogen). Some of the materials included in this invention are: boron nitride (BN) platelets, hot pressed BN, BNNT, BN particle containing resins, BN nanofiber containing resins, carbon fiber reinforced BN containing resins, BNNT containing resins, and hydrogenated BN and BNNT, hydrogen stored BN and BNNT, high hydrogen containing polymer or ceramic matrices, and a combination of these.
摘要:
The invention consists of radiation shielding materials for shielding in the most structurally robust combination against galactic cosmic radiation (GCR), neutrons, and solar energetic particles (SEP). Materials for vehicles, space structures, habitats, landers, rovers, and spacesuits must possess functional characteristics of radiation shielding, thermal protection, pressure resistance, and mechanical durability. The materials are tailored to offer the greatest shielding against GCR, neutrons, and SEP in the most structurally robust combination, also capable of shielding against micrometeoriod impact. The boron nitride nanotube (BNNT) is composed entirely of low Z atoms (boron and nitrogen). Some of the materials included in this invention are: boron nitride (BN) platelets, hot pressed BN, BNNT, BN particle containing resins, BN nanofiber containing resins, carbon fiber reinforced BN containing resins, BNNT containing resins, and hydrogenated BN and BNNT, hydrogen stored BN and BNNT, high hydrogen containing polymer or ceramic matrices, and a combination of these.