Abstract:
A heat-shrinkable bag has a means for initiating a manual tear that can be propagated to open the bag and allow a product to be readily removed therefrom, without the use of a knife or scissors or any other implement. The bag is made from a heat-shrinkable multilayer film having a Peak Load Impact Strength of at least 50 Newtons per mil. The means for initiating tearing results in a first tear in the first side of the bag, and a second tear in the second side of the bag. The first tear and the second tear are each capable of being manually propagated through a heat seal and across the bag, or down the length of the bag, with the tear being capable of being manually propagated through and to an opposite bag edge, so that the product inside a package can be readily removed from the bag. A process for making a package and manually opening the package, comprises placing a product inside the bag, sealing the bag closed, shrinking the film around the product, manually initiating and manually propagating the first and second tears, and readily removing the product from the bag.
Abstract:
A cook-in bag having a patch adhered thereto provides is designed for cook-in of bone-in meat products. The patch is adhered to the bag with an adhesive capable of withstanding cook-in conditions.
Abstract:
A packaging article has tear initiators for initiating a manual tear that can be propagated to open a package and allow a product to be readily removed therefrom, without the use of a knife or scissors or any other implement. The packaging article is made from a heat-shrinkable multilayer film having at least one layer containing an incompatible polymer blend, and/or a layer containing an inorganic filler, and/or a layer having a high Young's modulus. The film also has a Peak Load Impact Strength of at least 50 Newtons per mil, The tear initiators can be used to generate a manual machine direction tears to open the package, with the manual machine direction tear being capable of propagating in the machine direction to the opposite edge of the packaging article. A process for making a package and manually opening the package is also disclosed.
Abstract:
A package which allows for butchering and packaging of fresh red meat at a centralized facility is provided which includes a an impermeable tray supporting the product, a first film sealed to the tray for enclosing the product, means defined within the first film for exchanging gases into and out of the package, and a second impermeable film enclosing the first film, such that removal of said impermeable film provides for the exchange of gases into and out of the package. The means for exchanging gases may be perforations defined within the first film, a second highly permeable film sealed to the first film, or an enlarged opening formed within the first film which is enclosed with a patch following adequate gas exchange at retail. Such gas exchange is required to release any low oxygen atmosphere and allow for the introduction of oxygen to the packaged meat product, said means for exchanging gases having a gas transmission rate of at least about 50,000 cc/m2/24 hrs./atm. at 73° F.
Abstract translation:提供了一种允许在集中设施中屠宰和包装新鲜红肉的包装,其包括支撑产品的不透水托盘,密封到用于封闭产品的托盘的第一膜,在第一膜内限定用于将气体交换的装置 并且脱离包装,以及封闭第一膜的第二不可渗透膜,使得去除所述不可渗透膜提供气体进出包装物的交换。 用于交换气体的装置可以是限定在第一膜内的穿孔,密封到第一膜的第二高渗透膜,或在第一膜中形成的扩大的开口,其在零售时进行适当的气体交换之后被贴片封闭。 需要这种气体交换以释放任何低氧气氛并允许将氧气引入到包装的肉制品中,所述用于更换气体传输速率为至少约50,000cc / m 2/24小时的气体的装置 atm。 在73°F
Abstract:
A packaging article has tear initiators for initiating a manual tear that can be propagated to open a package and allow a product to be readily removed therefrom, without the use of a knife or scissors or any other implement. The packaging article is made from a heat-shrinkable multilayer film having at least one layer containing an incompatible polymer blend, and/or a layer containing an inorganic filler, and/or a layer having a high Young's modulus. The film also has a Peak Load Impact Strength of at least 50 Newtons per mil, The tear initiators can be used to generate a manual machine direction tears to open the package, with the manual machine direction tear being capable of propagating in the machine direction to the opposite edge of the packaging article. A process for making a package and manually opening the package is also disclosed.
Abstract:
A package, which allows for butchering and packaging of fresh red meat at a centralized facility is provided which includes an impermeable tray supporting the product, a first film sealed to the tray for enclosing the product, a channel defined within the first film for exchanging gases into and out of the package, and a second impermeable film enclosing the first film, such that removal of the impermeable film provides for the exchange of gases into and out of the package. The channel for exchanging of gases may be perforations defined within the first film, a second highly permeable film sealed to the first film, or an enlarged opening formed within the first film, which is enclosed with a patch following adequate gas exchange at retail. Such gas exchange is required to release any low oxygen atmosphere and allow for the introduction of oxygen to the packaged meat product. The channel for exchanging gases having a gas transmission rate of at least about 50,000 cc/m2/24 hrs./atm. at 73° F.
Abstract:
A patch bag comprises a lay-flat bag having a patch adhered thereto. The bag has an open top, a closed bottom, and first and second closed sides. The bag is made from a bag film having an inside surface which is sealed to itself. The bag film includes a seal impression on its outside surface. The patch is made from a patch film which is adhered to the outside surface of the bag film. The patch covers at least a portion of the seal impression on the outside surface of the bag film. The patch has a smooth, unimpressed outer surface over the seal impression on the bag film. A process for making the patch bag comprises sealing the bag film to itself and thereafter adhering the patch to the bag, with the patch being adhered over the seal impression on the bag film.
Abstract:
A dual-film package and method for making such package is disclosed which combines the manufacturing simplicity of a package having a single, peelable lid with the consistent peelability of a package having separate permeable and impermeable lids. This is accomplished by providing a support member and a lid having a gas-permeable film and a substantially gas-impermeable film. A first heat-weld bonds the gas-permeable film to the support member and a second heat-weld bonds the gas-impermeable film to the gas-permeable film. The first and second heat-welds each have a bond-strength which is greater than the intra-film cohesive strength of the gas-permeable film so that the lid preferentially delaminates within the gas-permeable film upon peeling, thereby leaving a portion of the gas-permeable film lidded to the support member.
Abstract:
A laminate comprising two or more films, at least one of the films being a coextruded, multilayer film, wherein the laminate delaminates within the coextruded, multilayer film when the laminate is subjected to a peel force ranging from 0.001 to 2.5 pounds per inch. The laminate advantageously provides the lid for a package and delaminates into a substantially gas-impermeable portion and a gas-permeable portion, with the gas-permeable portion being bonded directly to a product support member of the package. In this manner, the gas-impermeable portion may be peelably removed from the package to allow atmospheric oxygen to enter the interior of the package. The gas-permeable portion may be provided by perforating the delaminatable, coextruded film and bonding such film to the support member so that, when the laminate is caused to be delaminated within the perforated, coextruded film, the perforations are exposed to the ambient atmosphere and thereby allow for rapid ingress of oxygen into the interior of the package.
Abstract:
A laminate comprising two or more films, at least one of the films being a coextruded, multilayer film, wherein the laminate delaminates within the coextruded, multilayer film when the laminate is subjected to a peel force ranging from 0.001 to 2.5 pounds per inch. The laminate advantageously provides the lid for a package and delaminates into a substantially gas-impermeable portion and a gas-permeable portion, with the gas-permeable portion being bonded directly to a product support member of the package. In this manner, the gas-impermeable portion may be peelably removed from the package to allow atmospheric oxygen to enter the interior of the package. The gas-permeable portion may be provided by perforating the delaminatable, coextruded film and bonding such film to the support member so that, when the laminate is caused to be delaminated within the perforated, coextruded film, the perforations are exposed to the ambient atmosphere and thereby allow for rapid ingress of oxygen into the interior of the package.