摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders are non-magnetic and have a HCP crystal structure. An exemplary method includes (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration or aggregation phenomenon. Therefore, exemplary pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present disclosure, can be provided in a relatively uniform, well-dispersed state because of the reduced aggregation and agglomeration of the nickel powder. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders have non-magnetic property and a HCP crystal structure. The method include (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration phenomenon. Therefore, the pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present invention, can keep the well-dispersed state. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
The present invention relates to a method for preparing PEEK electrolyte membrane which is sulfonated homogeneously by employing organic solvent casting method. The method of preparing PEEK according to the present invention consists of steps of: dissolving the dried PEEK in methyl sulfonic acid solution; diluting the prepared solution with sulfuric acid for sulfonation; precipitating, filtering and washing the obtained material; dissolving the obtained material in organic solvents; and solidifying the obtained material. The methanol permeability of the membrane is lowered by 1/10 to that of Nafion, and the Young's modulus of the membrane is increased by about 10 times while the ion conductivity is maintained at a constant state by employing the present method. Further, the properties of the electrolyte membrane are affected by the type of organic solvent selected.
摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders are non-magnetic and have a HCP crystal structure. An exemplary method includes (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration or aggregation phenomenon. Therefore, exemplary pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present disclosure, can be provided in a relatively uniform, well-dispersed state because of the reduced aggregation and agglomeration of the nickel powder. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders have non-magnetic property and a HCP crystal structure. The method include (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration phenomenon. Therefore, the pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present invention, can keep the well-dispersed state. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
The invention generally relates to fluorescent particles and more specifically to silica-based fluorescent nanoporous particles with physically encapsulated organic dyes. In one aspect of the invention, the nanoporous architecture provides a significant enhancement in fluorescence of the particles brightness compared to free dye. A particular chemical control of the silica matrix prevents the dye molecules from leaking the particles.
摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders have non-magnetic property and a HCP crystal structure. The method include (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration phenomenon. Therefore, the pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present invention, can keep the well-dispersed state. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
Provided is a method for preparing non-magnetic nickel powders. The method include (a) heating a mixture including a nickel precursor compound and a polyol to reduce the nickel precursor compound to nickel powders with a face-centered cubic (FCC) crystal structure, and (b) heating the resultant mixture of step (a) to transform at least a portion of the nickel powders with the FCC crystal structure to nickel powders with a hexagonal close packed (HCP) crystal structure.
摘要:
Provided is a method for preparing non-magnetic nickel powders. The method include (a) heating a mixture including a nickel precursor compound and a polyol to reduce the nickel precursor compound to nickel powders with a face-centered cubic (FCC) crystal structure, and (b) heating the resultant mixture of step (a) to transform at least a portion of the nickel powders with the FCC crystal structure to nickel powders with a hexagonal close packed (HCP) crystal structure.