摘要:
A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter and/or substantially synchronizing the acquisition of blood-vessel data to an identifiable portion of heartbeat data. In one embodiment, a computing device and catheter acquire RF backscattered data from a vascular structure. The backscattered ultrasound data is then used to estimate at least one transfer function. The transfer function(s) can then be used to calculate response data for the vascular tissue. Another embodiment includes an IVUS console connected to a catheter and a computing device that acquires RF backscattered data from a vascular structure. Based on the backscattered data, the computing device estimates the catheter's transfer function and to calculate response data for the vascular tissue. The response data and histology data are then used to characterize at least a portion of the vascular tissue.
摘要:
A system and method are disclosed that facilitate generating visual representations of characterized tissue based upon ultrasound echo information obtained from a portion of an imaged body. The system includes a first filter having a first filter band that is applied to a near range portion of the ultrasound echo information to render near range filtered echo information. A second filter, having a second filter band that covers a frequency range of the first filter band, is applied to a far range portion of the ultrasound echo information to render far range filtered echo information. The system furthermore includes a set of characterization criteria that are applied to the near and far range filtered echo information. The characterized near and far range image data are thereafter combined into a single tissue-characterization image.
摘要:
A system and method are provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. In one embodiment, the computing device includes a plurality of applications operating thereon that are used to (I) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image in accordance with at least one factor.
摘要:
A system and method are disclosed for automatically classifying plaque lesions. A plaque classification application applies a plaque classification criterion to at least one graphical image, comprising a map of spectrally-analyzed characterized tissue of a vessel cross-section, to render an overall plaque classification for the slice or set of slices, covering a 3D volume. The plaque classification is based upon the amount and location of each characterized tissue type (e.g., necrotic core—NC). In an exemplary embodiment the set of potential plaque classifications, not to be confused with characterized tissue types—from which the plaque classifications are derived—include, for example: adaptive intimal thickening (AIT), pathological intimal thickening (PIT), fibroatheroma (FA), thin-cap fibroatheroma (TCFA), and fibro-calcific (FC).
摘要:
A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an-IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image in accordance with at least one factor. In one embodiment of the present invention, the at least one factor is selected from a group consisting of gradient factor, continuity factor, and curvature factor.
摘要:
The present invention uses a radio frequency (RF) signal backscattered from vascular tissue to identify a border on a vascular image. Embodiments of the invention operate in accordance with a data gathering device connected to a computing device and a transducer via a catheter. The transducer is used to gather RF data backscattered from vascular tissue. The RF data is provided to the computing device via the data-gathering device. In one embodiment of the present invention, the computing device includes (i) a data storage device for storing tissue types and related parameters and (ii) an application. The application is used to convert the RF data into the frequency domain and to identify associated parameters. The parameters are compared to the parameters stored in the data storage device to identify the corresponding tissue type. This information is used, possibly with other border-related information, to determine a border on a vascular image.
摘要:
A system and method is provided for using backscattered data and known parameters to characterize vascular tissue. Specifically, in one embodiment of the present invention, an ultrasonic device is used to acquire RF backscattered data (i.e., IVUS data) from a blood vessel. The IVUS data is then transmitted to a computing device and used to create an IVUS image. The blood vessel is then cross-sectioned and used to identify its tissue type and to create a corresponding image (i.e., histology image). A region of interest (ROI), preferably corresponding to the identified tissue type, is then identified on the histology image. The computing device, or more particularly, a characterization application operating thereon, is then adapted to identify a corresponding region on the IVUS image. To accurately match the ROI, however, it may be necessary to warp or morph the histology image to substantially fit the contour of the IVUS image. After the corresponding region is identified, the IVUS data that corresponds to this region is identified. Signal processing is then performed and at least one parameter is identified. The identified parameter and the tissue type (e.g., characterization data) is stored in a database. In another embodiment of the present invention, the characterization application is adapted to receive IVUS data, determine parameters related thereto (either directly or indirectly), and use the parameters stored in the database to identify a tissue type or a characterization thereof.
摘要:
A system and method is provided for using ultrasound data backscattered from vascular tissue to estimate the transfer function of a catheter (including components attached thereto—e.g., IVUS console, transducer, etc.). Specifically, in accordance with a first embodiment of the present invention, a computing device is electrically connected to a catheter and used to acquire RF backscattered data from a vascular structure (e.g., a blood vessel, etc.). The backscattered ultrasound data is then used, together with an algorithm, to estimate the transfer function. The transfer function can then be used (at least in a preferred embodiment) to calculate response data for the vascular tissue (i.e., the tissue component of the backscattered ultrasound data). In a second embodiment of the present invention, an IVUS console is electrically connected to a catheter and a computing device and is used to acquire RF backscattered data from a vascular structure. The backscattered data is then transmitted to the computing device, where it is used to estimate the catheter's transfer function and to calculate response data for the vascular tissue. The response data and histology data are then used to characterize at least a portion of the vascular tissue (e.g., identify tissue type, etc.).
摘要:
Using a patient's physiological parameters ascertained using standard intravascular ultrasound (IVUS) in combination with virtual histology (VH), these physiological parameters are evaluated to predict whether the patient's physiology has an increased risk of producing a Clinical Event or a Silent Clinical Event. In one embodiment the following three physiological parameters: the Plaque Burden; the Minimum Lumen Area; and whether a VH-TCFA or multiple VH-TCFAs are present are compared to target values and ranges. A concurrence of the values for the physiological parameters falling within the target ranges indicates that a patient's physiology has an increased risk of producing a Clinical Event or a Silent Clinical Event, respectively. In other embodiments, combinations of any two of the three physiological parameters listed above are compared to target values and ranges. A concurrence of the values for two of the physiological parameters falling within the target ranges indicates that a patient's physiology has an increased risk of producing a Clinical Event. In still other embodiments, any of the three physiological parameters listed above are compared to target values and ranges. Any of the values of the physiological parameters falling within the target ranges indicates that a patient's physiology has an increased risk of producing a Clinical Event.
摘要:
A system and method is provided for using a first vascular image, or more particularly a plurality of control points located thereon, to identify a border on a second vascular image. Embodiments of the present invention operate in accordance with an intra-vascular ultrasound (IVUS) device and a computing device electrically connected thereto. Specifically, in one embodiment of the present invention, an IVUS console is electrically connected to a computing device and adapted to acquire IVUS data. The IVUS data (or multiple sets thereof) is then provided to (or acquired by) the computing device. In one embodiment of the present invention, the computing device includes a plurality of applications operating thereon—i.e., a border-detection application, an extrapolation application, and an active-contour application. These applications are used to (i) identify a border and control points on a first IVUS image (i.e., any IVUS image), (ii) extrapolate the control points to a second IVUS image (i.e., another IVUS image), (iii) identify a border on the second IVUS image, and (iv) adjust the border on the second IVUS image in accordance with at least one factor. In one embodiment of the present invention, the at least one factor is selected from a group consisting of gradient factor, continuity factor, and curvature factor.