基于混合上下文CNN模型的医学图像分割

    公开(公告)号:CN110945564B

    公开(公告)日:2023-04-07

    申请号:CN201980001954.5

    申请日:2019-08-26

    IPC分类号: G06T7/11

    摘要: 通过2D卷积神经网络(CNN)分割由多个解剖学图像形成的体积图像,每个解剖学图像具有不同成像模态的多个图像切片。通过在没有任何估计的图像切片的情况下结合来自两个相邻解剖学图像的所选择的图像切片来预处理单个解剖学图像以形成混合上下文图像。2D CNN利用关于多模态上下文的边信息和3D空间上下文来提高分割准确性,同时避免由于估计的图像切片中的伪像导致的分割性能降低。2D CNN通过具有从最高层级到最低层级的多个层级的BASKET‑NET模型来实现。层级的大多数多通道特征图中的通道数量从最高层级到最低层级单调减少,从而允许最高层级富含低层级特征细节,以帮助更精细地分割单个解剖学图像。

    使用掩模来提高卷积神经网络对于癌细胞筛查应用的分类性能

    公开(公告)号:CN109154989B

    公开(公告)日:2021-07-06

    申请号:CN201880000218.3

    申请日:2018-03-08

    发明人: 何学俭 王陆

    IPC分类号: G06K9/62 G06N3/04

    摘要: 在癌细胞筛查中,患者的细胞由卷积神经网络(CNN)分类来识别异常细胞。在一种方法中,具有比掩模周边更透明的中心的掩模用于掩蔽包含感兴趣的细胞的输入图像来产生经掩蔽的图像。因为细胞通常位于图像中心附近,并且因为图像通常包含在图像周边附近的无关对象,例如正常细胞和微生物,通过使用经掩蔽的图像而不是原始图像,在训练CNN时和分类时减少了由于无关对象引起的干扰。在另一种方法中,在分类之前向特征图应用掩蔽。在CNN中,该掩蔽通过使每个特征图与卷积核卷积来产生中间特征图,接着截断其周边区域来产生尺寸缩小的特征图而完成。

    基于混合上下文CNN模型的医学图像分割

    公开(公告)号:CN110945564A

    公开(公告)日:2020-03-31

    申请号:CN201980001954.5

    申请日:2019-08-26

    IPC分类号: G06T7/11

    摘要: 通过2D卷积神经网络(CNN)分割由多个解剖学图像形成的体积图像,每个解剖学图像具有不同成像模态的多个图像切片。通过在没有任何估计的图像切片的情况下结合来自两个相邻解剖学图像的所选择的图像切片来预处理单个解剖学图像以形成混合上下文图像。2D CNN利用关于多模态上下文的边信息和3D空间上下文来提高分割准确性,同时避免由于估计的图像切片中的伪像导致的分割性能降低。2D CNN通过具有从最高层级到最低层级的多个层级的BASKET-NET模型来实现。层级的大多数多通道特征图中的通道数量从最高层级到最低层级单调减少,从而允许最高层级富含低层级特征细节,以帮助更精细地分割单个解剖学图像。

    使用掩模来提高卷积神经网络对于癌细胞筛查应用的分类性能

    公开(公告)号:CN109154989A

    公开(公告)日:2019-01-04

    申请号:CN201880000218.3

    申请日:2018-03-08

    发明人: 何学俭 王陆

    IPC分类号: G06K9/62 G06N3/04

    摘要: 在癌细胞筛查中,患者的细胞由卷积神经网络(CNN)分类来识别异常细胞。在一种方法中,具有比掩模周边更透明的中心的掩模用于掩蔽包含感兴趣的细胞的输入图像来产生经掩蔽的图像。因为细胞通常位于图像中心附近,并且因为图像通常包含在图像周边附近的无关对象,例如正常细胞和微生物,通过使用经掩蔽的图像而不是原始图像,在训练CNN时和分类时减少了由于无关对象引起的干扰。在另一种方法中,在分类之前向特征图应用掩蔽。在CNN中,该掩蔽通过使每个特征图与卷积核卷积来产生中间特征图,接着截断其周边区域来产生尺寸缩小的特征图而完成。