蛋白质数据特征提取方法

    公开(公告)号:CN111414802A

    公开(公告)日:2020-07-14

    申请号:CN202010106311.1

    申请日:2020-02-21

    Abstract: 本发明公开了一种蛋白质数据特征提取方法,包括以下步骤:(1)、对蛋白质的原始三维模型进行预处理,得到预处理三维模型;(2)、获取预处理三维模型的多个二维视图,提取各所述二维视图的图像特征矩阵,将所有的图像特征矩阵进行融合,得到蛋白质的二维特征矩阵;(3)、获取蛋白质的三维特征矩阵;(4)、将蛋白质的二维特征矩阵和三维特征矩阵进行融合计算,得到蛋白质数据特征矩阵。本发明的方法通过提取蛋白质的二维视图特征信息和三维模型空间结构信息,使得对蛋白质的外形特征描述更加全面。通避免了仅采用二维提取特征信息不完整,能够保证计算蛋白质模型相似度的科学性和准确性。

    基于元学习的厄尔尼诺极端天气预警方法及装置

    公开(公告)号:CN115113303A

    公开(公告)日:2022-09-27

    申请号:CN202210703932.7

    申请日:2022-06-21

    Abstract: 本发明公开了一种基于元学习的厄尔尼诺极端天气预警方法及装置,包括:设计全局引导的注意力机制引导低层特征的学习,并利用互信息约束加强不同层级海洋特征的表征一致性,将多层级海洋特征拼接为全局特征,利用该全局特征对厄尔尼诺指数进行预测;对每个元训练任务,利用元学习算法对多层级厄尔尼诺指数预测网络进行参数训练,得到能够处理不同时期数据,且有适应能力的网络参数;以元训练阶段优化好的参数作为初始化参数,在SODA数据集上对多层级厄尔尼诺指数预测网络进行进一步微调;在GODAS数据集上进行最终厄尔尼诺指数预测;建立最终厄尔尼诺指数与降雨量的映射函数,当预测降雨量达到一定阈值时进行预警并提前进行汛期防治工作。

Patent Agency Ranking