-
公开(公告)号:CN111105393B
公开(公告)日:2023-04-18
申请号:CN201911169056.9
申请日:2019-11-25
Applicant: 长安大学
IPC: G06T7/00 , G06T7/162 , G06V10/764 , G06V10/766 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的葡萄病虫害识别方法,包括以下步骤:对获取的葡萄株图像进行处理得到图像特征信息;对图像特征信息进行分析提取病虫害特征信息;将提取的病虫害信息与预设数据特征库进行对比,获取葡萄病虫害类型。本发明还提出一种基于深度学习的葡萄病虫害识别装置。本发明将深度学习的方法用于病虫害检测,代替人工检测葡萄病虫害的情况,有效降低了因人工主观性带来的诊断失误,节约了大量的人工成本,提高了葡萄病虫害检测的准确率和检测速度,有效提高了葡萄种植者的工作效率,节省大量人力,物力,具有十分广阔的市场应用前景。
-
公开(公告)号:CN111105393A
公开(公告)日:2020-05-05
申请号:CN201911169056.9
申请日:2019-11-25
Applicant: 长安大学
Abstract: 本发明公开了一种基于深度学习的葡萄病虫害识别方法,包括以下步骤:对获取的葡萄株图像进行处理得到图像特征信息;对图像特征信息进行分析提取病虫害特征信息;将提取的病虫害信息与预设数据特征库进行对比,获取葡萄病虫害类型。本发明还提出一种基于深度学习的葡萄病虫害识别装置。本发明将深度学习的方法用于病虫害检测,代替人工检测葡萄病虫害的情况,有效降低了因人工主观性带来的诊断失误,节约了大量的人工成本,提高了葡萄病虫害检测的准确率和检测速度,有效提高了葡萄种植者的工作效率,节省大量人力,物力,具有十分广阔的市场应用前景。
-
公开(公告)号:CN111753910A
公开(公告)日:2020-10-09
申请号:CN202010593477.0
申请日:2020-06-27
Applicant: 长安大学
Abstract: 本发明公开了一种基于LSTM的滴滴订单需求预测方法,包括以下步骤:对获取的GPS订单数据进行筛选清洗得到预处理数据,将预处理数据匹配到实际地图道路网络中;对预处理数据进行聚类分析得到区域数据簇,根据区域数据簇将实际地图道路网络划分若干子区域;根据子区域中的预处理数据训练基于长短期记忆网络的订单预测模型;通过订单预测模型预测每一子区域每一时段内的起点订单数量和终点订单数量,寻找热点区域;计算热点区域的订单差值,根据订单差值判断子区域该时段的车辆实际需求量。本发明还公开了一种基于LSTM的滴滴订单需求预测装置,本发明有利于提高滴滴司机的经济效益并提升乘客的乘车体验。
-
-