-
公开(公告)号:CN117710252A
公开(公告)日:2024-03-15
申请号:CN202311465117.2
申请日:2023-11-06
Applicant: 重庆邮电大学
IPC: G06T5/77 , G06T5/70 , G06T7/41 , G06V10/54 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/094
Abstract: 本发明请求保护一种基于细化边缘语义的人脸复原方法。首先通过构建身份‑纹理数据库,复原时检索同一人的面部纹理以实现复原人脸身份的强一致性;然后通过细化边缘语义机制明确退化人脸的大致轮廓和组件范围以近似先验信息,摒弃获取先验信息获取的时间,并通过特征选择模块中的双分支结构,进一步对细化边缘特征进行选择以实现复原人脸图像的清晰边缘。最后借助细节补充模块,动态的融合检索到的纹理,使得复原结果更加的真实。在实际场景中,通过平滑复原人脸边缘杜绝复原人脸和背景的明显差异,实现更加自然的图像复原效果。该方法具有可靠的纹理生成效果和优秀的推理速度,部署所需要的资源和难度较低,并为超高清人脸场景提供了一种思路。
-
公开(公告)号:CN116758632A
公开(公告)日:2023-09-15
申请号:CN202310704051.1
申请日:2023-06-14
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于区域扩增和位置信息交互的视频行人重识别方法,属于图像检索方法。包括以下步骤:数据切片及预处理;然后使用通道注意模块进行通道权值重建;接着提取前帧的显著特征,进一步将后帧的关注区域从显著到全面进行过渡;然后利用位置信息交互(LII)模块促进位置信息跨所有帧交互,以实现帧之间的相互增强;最后根据模型设计损失函数并进行训练,值得注意的是,在测试阶段,去除LII模块以提升推理速度。本发明提出了轻量化的视频行人重识别模型,在多个公共基准上展现了强大的性能和泛化能力。
-