-
公开(公告)号:CN110414604A
公开(公告)日:2019-11-05
申请号:CN201910695455.2
申请日:2019-07-30
Applicant: 重庆邮电大学
Abstract: 本发明涉及感知对抗生成网络驱动的锂电池故障数据生成方法,属于电池技术领域。在本发明中以外部电气参数表示的实测标注故障小样本数据为对象,考虑随机变量注入小样本故障数据的感知残差效应。以感知生成网络为对象,构建适应故障小样本数据分布的深度神经网络结构,及其感知损失函数设计策略。以对抗鉴别网络为对象,构建反映真实故障数据分布的网络结构,及其对抗损失函数构建范式,理解故障数据生成模型中真实分布与感知分布的误差传播关系及其可能的博弈模式,生成与真实故障锂电池分布接近的数据。该方法解决了目前有效可用的动力锂电池故障数据稀缺问题,提高了神经网络的训练效果,提高锂电池故障诊断模型的泛化能力弱与表达能力。
-
公开(公告)号:CN110412467B
公开(公告)日:2021-07-23
申请号:CN201910696529.4
申请日:2019-07-30
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种归一化互信息准则约束的锂电池故障数据筛选方法,属于锂电池故障诊断领域。该方法包括以下步骤:S1:采集数据:通过传感器采集真实锂电池故障数据,使用感知生成网络生成候选锂电池故障数据;S2:采用分数阶傅里叶变换提取锂电池故障数据的特征;S3:采用归一化互信息作为锂电池故障数据的筛选测度,计算真实锂电池故障特征矩阵A与候选锂电池故障特征矩阵B之间的归一化互信息;S4:利用故障诊断实验选取筛选阈值。本发明能够使筛选的锂电池故障数据真实有效,同时还能提高筛选速度,为故障诊断的深度学习方法提供了高质量的数据保障。
-
公开(公告)号:CN111220921A
公开(公告)日:2020-06-02
申请号:CN202010017957.2
申请日:2020-01-08
Applicant: 重庆邮电大学
IPC: G01R31/388 , G01R31/367 , G01R31/396 , G01R31/392 , G01R31/00 , G06N3/04 , G06N3/08
Abstract: 本发明涉及基于改进卷积-长短时记忆神经网络的锂电池容量估算方法,属于锂电池技术领域。本发明通过对锂电池数据的处理、遗传算法对改进的卷积-长短时记忆神经网络神经网络调参、改进的CNN-LSTM神经网络训练和模型测试这四个步骤得到锂电池容量估算的模型。本发明引进经验模态分解算法对锂电池数据进行分解,从而实现数据去噪。遗传算法优化改进的CNN-LSTM神经网络超参数。利用卷积神经网络提取锂电池充放电数据的空间特征,再将这些特征输入改进的长短时记忆神经网络进行时间特征的提取,最后通过全连接层输出估算的容量。本发明克服了传统的基于模型的算法过度依赖电池模型的局限性,且预测精度高,具有一定工程应用性。
-
公开(公告)号:CN110412467A
公开(公告)日:2019-11-05
申请号:CN201910696529.4
申请日:2019-07-30
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种归一化互信息准则约束的锂电池故障数据筛选方法,属于锂电池故障诊断领域。该方法包括以下步骤:S1:采集数据:通过传感器采集真实锂电池故障数据,使用感知生成网络生成候选锂电池故障数据;S2:采用分数阶傅里叶变换提取锂电池故障数据的特征;S3:采用归一化互信息作为锂电池故障数据的筛选测度,计算真实锂电池故障特征矩阵A与候选锂电池故障特征矩阵B之间的归一化互信息;S4:利用故障诊断实验选取筛选阈值。本发明能够使筛选的锂电池故障数据真实有效,同时还能提高筛选速度,为故障诊断的深度学习方法提供了高质量的数据保障。
-
-
-