一种基于KAN-RAE的频谱地图重构方法

    公开(公告)号:CN118695377A

    公开(公告)日:2024-09-24

    申请号:CN202410734012.0

    申请日:2024-06-07

    Abstract: 本发明请求保护一种基于KAN‑RAE的频谱地图重构方法,属于无线电监测技术领域。本发明包括以下步骤:S1:制作完整的频谱地图作为神经网络的数据集;S2:引入科尔莫格罗夫‑阿诺德网络(Kolmogorov–Arnold Networks,KAN)和残差(Residual)连接来改进自编码器(AutoEncoder,AE),搭建出KAN‑RAE神经网络框架;S3:通过均方误差损失函数完成模型离线训练,获得频谱地图重构模型;S4:利用训练好的网络模型,完成在线频谱地图重构。本发明提出一种基于KAN‑RAE的神经网络频谱地图重构方法,引入KAN和残差连接改进传统的自编码器结构,极大减少了神经网络的参数,提高了模型的收敛速度并降低误差,在低采样率下,频谱地图仍可精确重构。

    一种面向区域受限频谱地图构建的传感器布局方法

    公开(公告)号:CN118590912A

    公开(公告)日:2024-09-03

    申请号:CN202410633122.8

    申请日:2024-05-21

    Abstract: 本发明请求保护一种面向区域受限频谱地图构建的传感器布局方法,包括以下步骤:S1:将频谱地图对应的区域进行离散化处理;S2:在不受限区域内,计算信道矩阵每列的l2范数,选取其最大的点作为第一个采样点;S3:基于压缩感知相关性约束,从采样矩阵和信道矩阵全局相关性最小的角度出发,在不受限区域内,使用贪婪算法进行采样点选取。S4:进一步推导算法,简化贪婪算法运算。本发明将构建频谱地图过程看作压缩感知问题。利用采样矩阵的特殊性,从压缩感知的相关性约束出发进行算法推导,进行传感器布局优化,既简化了采样优化算法,又有效提高构建频谱地图的精确度。

    一种面向多源复杂场景的频谱态势补全方法

    公开(公告)号:CN118611799A

    公开(公告)日:2024-09-06

    申请号:CN202410461331.9

    申请日:2024-04-17

    Abstract: 本发明请求保护一种面向多源复杂场景的频谱态势补全方法,属于无线电监测技术领域。本发明针对目标场景中辐射源和传播模型相关的先验信息未知、且存在多辐射源和阴影衰落,目标场景复杂,频谱态势恢复困难的问题。通过以下步骤解决:S1:对目标区域进行离散化处理;S2:坐标系中随机选取若干个目标点,部署传感器,获得目标位置的接收信号强度,构建稀疏张量、观测矩阵和RSS矩阵;S3:由观测矩阵和稀疏矩阵,进行非负矩阵分解获得各个辐射源采样分量;S4:将各个采样分量分别通过残差自编码器获得单辐射源的路径衰减分量S5:将各个路径衰减分量相加,获得完整频谱地图的路径衰减分量;S6:将采样数据与对应位置的路径衰减分量做除法获得阴影衰落分量;S7:阴影衰落分量进行薄板样条(Thin Plate Splines,TPS)插值获得完整频谱地图的阴影衰落分量估计;S8:将路径损耗分量和阴影衰落分量做Hadamard乘积,得到目标区域的整体频谱态势。本发明充分利用采样数据,具有较好的频谱态势重构效果,适用于环境中存在多辐射源和阴影衰落的复杂认知场景。

Patent Agency Ranking