-
公开(公告)号:CN112016004B
公开(公告)日:2023-03-31
申请号:CN202010851950.0
申请日:2020-08-21
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q50/00 , G06Q50/26
Abstract: 本发明属于信息化管理领域,特别涉及一种基于多粒度信息融合的职务犯罪筛查系统及方法;所述筛查系统包括数据采集服务器系统、数据存储服务器、中心计算服务器、网络通信服务器以及若干客户端;通过数据采集服务器系统共同采集涉案人员的多源数据信息,并存储至数据存储服务器中,所述中心计算服务器将对数据进行多粒度融合,按照数据认知方式学习涉案人员的低维向量,计算出涉案人员与其密切人员的相似度距离,按照相似度距离推荐出与所述涉案人员相近似的若干密切人员;并通过网络通信服务器传输至若干客户端进行监控和处理;本发明融合多源数据,基于多粒度认知计算理论去除冗余线索,从中发现对职务犯罪侦查有用的知识,为办案人员提供辅助。
-
公开(公告)号:CN112507247B
公开(公告)日:2022-09-23
申请号:CN202011476008.7
申请日:2020-12-15
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q50/00
Abstract: 本发明属于社交网络分析领域,具体涉及一种融合用户状态信息的跨社交网络用户对齐方法;所述方法包括采用随机游走采样的方式提取用户的局部特征;采用迭代的方式计算出用户的状态值,循环比较具有相似状态值的用户集合作为该用户的全局特征;将局部特征和全局特征输入到词向量模型的神经网络模型中映射为低维特征向量;将用户在两个社交网络中的低维特征向量采用预设的映射函数进行对齐,输出源社交网络中的用户与目标社交网络中的用户中可能存在的潜在对齐用户对;本发明利用网络嵌入方法分别从局部和全局提取出社交用户特征,利用节点状态量化节点在网络中的重要性,通过融合节点状态以及迭代地更新训练对齐模型,提高用户识别的准确率。
-
公开(公告)号:CN112507247A
公开(公告)日:2021-03-16
申请号:CN202011476008.7
申请日:2020-12-15
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q50/00
Abstract: 本发明属于社交网络分析领域,具体涉及一种融合用户状态信息的跨社交网络用户对齐方法;所述方法包括采用随机游走采样的方式提取用户的局部特征;采用迭代的方式计算出用户的状态值,循环比较具有相似状态值的用户集合作为该用户的全局特征;将局部特征和全局特征输入到词向量模型的神经网络模型中映射为低维特征向量;将用户在两个社交网络中的低维特征向量采用预设的映射函数进行对齐,输出源社交网络中的用户与目标社交网络中的用户中可能存在的潜在对齐用户对;本发明利用网络嵌入方法分别从局部和全局提取出社交用户特征,利用节点状态量化节点在网络中的重要性,通过融合节点状态以及迭代地更新训练对齐模型,提高用户识别的准确率。
-
公开(公告)号:CN112016004A
公开(公告)日:2020-12-01
申请号:CN202010851950.0
申请日:2020-08-21
Applicant: 重庆邮电大学
IPC: G06F16/9536 , G06Q50/00 , G06Q50/26
Abstract: 本发明属于信息化管理领域,特别涉及一种基于多粒度信息融合的职务犯罪筛查系统及方法;所述筛查系统包括数据采集服务器系统、数据存储服务器、中心计算服务器、网络通信服务器以及若干客户端;通过数据采集服务器系统共同采集涉案人员的多源数据信息,并存储至数据存储服务器中,所述中心计算服务器将对数据进行多粒度融合,按照数据认知方式学习涉案人员的低维向量,计算出涉案人员与其密切人员的相似度距离,按照相似度距离推荐出与所述涉案人员相近似的若干密切人员;并通过网络通信服务器传输至若干客户端进行监控和处理;本发明融合多源数据,基于多粒度认知计算理论去除冗余线索,从中发现对职务犯罪侦查有用的知识,为办案人员提供辅助。
-
-
-