一种基于信号统计分布的WLAN定位组网方法

    公开(公告)号:CN108616836A

    公开(公告)日:2018-10-02

    申请号:CN201810328895.X

    申请日:2018-04-13

    Abstract: 本发明所述一种基于信号统计分布的WLAN定位组网方法,首先考虑各接入点(Access point,AP)之间的相关性,计算出信号在参考点的概率密度函数;其次,利用概率密度函数计算出不同的信号矢量在参考点出现的概率,并且结合参考点的位置先验概率,计算参考点的加权概率;然后,计算参考点的平均定位精度,从而得出目标区域的平均定位精度;最后,利用模拟退火算法对目标区域中的AP位置进行优化。本发明所提供的一种基于信号统计分布的WLAN定位组网方法,可以合理选择AP位置,避免AP布置的盲目性。

    一种基于小样本迭代迁移的室内入侵检测方法

    公开(公告)号:CN109068349B

    公开(公告)日:2021-08-06

    申请号:CN201810766490.4

    申请日:2018-07-12

    Abstract: 本发明所述一种基于小样本迭代迁移的室内入侵检测方法,分为离线阶段与在线阶段。在离线阶段,为入侵与静默接收信号强度(Received Signal Strength,RSS)打上不同的标签,构建源域。在线阶段,首先获得候选RSS的伪标签,构建目标域。然后利用类内迁移学习将源域与目标域RSS迁移到同一个子空间,再利用源域RSS对目标域RSS进行分类,从而得到目标域RSS更真实的标签,更新目标域。最后,源域与目标域RSS不断进行迭代迁移学习,直至算法收敛,得到目标域RSS最终的标签集,即可得到目标环境的入侵检测结果。本发明所提供的一种基于小样本迭代迁移的室内入侵检测方法,能够在克服设备差异性的同时,达到较高的检测精度,从而完成未知目标入侵检测。

    一种基于多核迁移学习的室内人员入侵检测方法

    公开(公告)号:CN110390273A

    公开(公告)日:2019-10-29

    申请号:CN201910594303.3

    申请日:2019-07-02

    Abstract: 本发明所述一种基于多核迁移学习的室内人员入侵检测方法,分为离线与在线阶段。在离线阶段,根据环境状态为采集的入侵与静默接收信号强度(Received Signal Strength,RSS)打上不同的标签,提取RSS特征并利用RSS特征与对应的标签集构建源域。在在线阶段,提取在线RSS的特征,并利用在线RSS特征及对应的伪标签集构建目标域。然后利用多核迁移学习将源域与目标域RSS迁移到同一个子空间,利用迁移后的源域RSS特征与标签集训练一个分类器,对目标域RSS特征进行分类,从而得到目标域RSS特征对应的新的标签,更新目标域。最后,重复上述步骤,直至算法收敛,得到目标域RSS特征最终的标签集,即实现对目标环境的入侵检测。本发明所提供的一种基于多核迁移学习的室内人员入侵检测方法,能够在降低真实环境中噪声对检测性能的影响的同时,实现对入侵人员的准确检测。

    一种基于小样本迭代迁移的室内入侵检测方法

    公开(公告)号:CN109068349A

    公开(公告)日:2018-12-21

    申请号:CN201810766490.4

    申请日:2018-07-12

    CPC classification number: H04W24/08 G06K9/6267 H04B17/318 H04W4/33

    Abstract: 本发明所述一种基于小样本迭代迁移的室内入侵检测方法,分为离线阶段与在线阶段。在离线阶段,为入侵与静默接收信号强度(Received Signal Strength,RSS)打上不同的标签,构建源域。在线阶段,首先获得候选RSS的伪标签,构建目标域。然后利用类内迁移学习将源域与目标域RSS迁移到同一个子空间,再利用源域RSS对目标域RSS进行分类,从而得到目标域RSS更真实的标签,更新目标域。最后,源域与目标域RSS不断进行迭代迁移学习,直至算法收敛,得到目标域RSS最终的标签集,即可得到目标环境的入侵检测结果。本发明所提供的一种基于小样本迭代迁移的室内入侵检测方法,能够在克服设备差异性的同时,达到较高的检测精度,从而完成未知目标入侵检测。

Patent Agency Ranking