-
公开(公告)号:CN113870335A
公开(公告)日:2021-12-31
申请号:CN202111232322.5
申请日:2021-10-22
Applicant: 重庆邮电大学
IPC: G06T7/50
Abstract: 本发明涉及一种基于多尺度特征融合的单目深度估计方法,属于三维场景感知领域,包括以下步骤:S1:引入Non‑Local注意力机制,构造混合的归一化函数;S2:在特征提取网络的本层特征、深层特征和浅层特征之间引入注意力机制,计算特征图上特征之间的关联信息矩阵;S3:构建多尺度特征融合模块;S4:在解码网络引入空洞空间金字塔池化模块,扩大卷积的感受野,迫使网络学习更多的局部细节信息。本发明有效的实现了特征提取网络分层特征之间跨空间和跨尺度的特征融合,提高了网络学习局部细节的能力并使深度图在重建过程中完成了细粒度的预测,所引入的参数相对于整个网络来说也相对比较低。
-
公开(公告)号:CN113870335B
公开(公告)日:2024-07-30
申请号:CN202111232322.5
申请日:2021-10-22
Applicant: 重庆邮电大学
IPC: G06T7/50
Abstract: 本发明涉及一种基于多尺度特征融合的单目深度估计方法,属于三维场景感知领域,包括以下步骤:S1:引入Non‑Local注意力机制,构造混合的归一化函数;S2:在特征提取网络的本层特征、深层特征和浅层特征之间引入注意力机制,计算特征图上特征之间的关联信息矩阵;S3:构建多尺度特征融合模块;S4:在解码网络引入空洞空间金字塔池化模块,扩大卷积的感受野,迫使网络学习更多的局部细节信息。本发明有效的实现了特征提取网络分层特征之间跨空间和跨尺度的特征融合,提高了网络学习局部细节的能力并使深度图在重建过程中完成了细粒度的预测,所引入的参数相对于整个网络来说也相对比较低。
-