一种基于极大无关多元逻辑回归的文本情感分类方法

    公开(公告)号:CN108595568B

    公开(公告)日:2022-05-17

    申请号:CN201810332338.5

    申请日:2018-04-13

    Abstract: 本发明提供了一种基于极大无关多元逻辑回归的文本情感分类方法,所述方法包括:获取文本数据,并对所述文本数据进行预处理;在第一模型的代价函数基础上,通过引入相关参数惩罚项,获取第二模型的代价函数;将预处理得到的训练数据输入第二模型的代价函数的导函数,并进行求解得到第二模型;所述第一模型为多元逻辑回归模型,所述第二模型为极大无关多元逻辑回归模型;将预处理得到的待预测数据输入所述第二模型,得到待预测数据中每个文本条目所属的情感类别。通过添加不相关约束项使得针对冗余数据具有较高的鲁棒性;降低了传统的多元逻辑回归模型的复杂度,具有更强的泛化能力;进而能够对获取的目标文本数据中文本条目进行精确分类。

    一种基于极大无关多元逻辑回归的文本情感分类方法

    公开(公告)号:CN108595568A

    公开(公告)日:2018-09-28

    申请号:CN201810332338.5

    申请日:2018-04-13

    Abstract: 本发明提供了一种基于极大无关多元逻辑回归的文本情感分类方法,所述方法包括:获取文本数据,并对所述文本数据进行预处理;在第一模型的代价函数基础上,通过引入相关参数惩罚项,获取第二模型的代价函数;将预处理得到的训练数据输入第二模型的代价函数的导函数,并进行求解得到第二模型;所述第一模型为多元逻辑回归模型,所述第二模型为极大无关多元逻辑回归模型;将预处理得到的待预测数据输入所述第二模型,得到待预测数据中每个文本条目所属的情感类别。通过添加不相关约束项使得针对冗余数据具有较高的鲁棒性;降低了传统的多元逻辑回归模型的复杂度,具有更强的泛化能力;进而能够对获取的目标文本数据中文本条目进行精确分类。

    基于Spark的极大无关多元逻辑回归模型对文本情感分类方法

    公开(公告)号:CN108536838A

    公开(公告)日:2018-09-14

    申请号:CN201810330888.3

    申请日:2018-04-13

    Abstract: 本发明提供了一种基于Spark的极大无关多元逻辑回归模型对文本情感分类方法,包括:将训练样本数据集存储于HDFS中;Spark平台从HDFS中读取数据生成RDD;Spark平台将数据的预处理任务分为多个任务组,对每个任务组中存储有读取数据的RDD进行预处理,将预处理的结果存入HDFS中;训练极大无关多元逻辑回归模型,经过求解得到极大无关多元逻辑回归分类器;将分类器输出到HDFS中;从HDFS中读取经过预处理的待预测文本的数据和训练得到的分类器;获取待预测文本的情感分类。本发明在Spark计算框架下并行方法求解,模型训练更加快速,更适合大数据场景下的文本情感分类;降低了传统多元逻辑回归模型的复杂度,具有更强的泛化能力;能够对待预测样本数据进行精确情感分类。

    基于Spark的极大无关多元逻辑回归模型对文本情感分类方法

    公开(公告)号:CN108536838B

    公开(公告)日:2021-10-19

    申请号:CN201810330888.3

    申请日:2018-04-13

    Abstract: 本发明提供了一种基于Spark的极大无关多元逻辑回归模型对文本情感分类方法,包括:将训练样本数据集存储于HDFS中;Spark平台从HDFS中读取数据生成RDD;Spark平台将数据的预处理任务分为多个任务组,对每个任务组中存储有读取数据的RDD进行预处理,将预处理的结果存入HDFS中;训练极大无关多元逻辑回归模型,经过求解得到极大无关多元逻辑回归分类器;将分类器输出到HDFS中;从HDFS中读取经过预处理的待预测文本的数据和训练得到的分类器;获取待预测文本的情感分类。本发明在Spark计算框架下并行方法求解,模型训练更加快速,更适合大数据场景下的文本情感分类;降低了传统多元逻辑回归模型的复杂度,具有更强的泛化能力;能够对待预测样本数据进行精确情感分类。

Patent Agency Ranking