-
公开(公告)号:CN108364098A
公开(公告)日:2018-08-03
申请号:CN201810129059.9
申请日:2018-02-08
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种天气特征对用户签到影响的度量方法,该方法包含如下步骤:S1:通过历史数据分析找到对用户签到影响较大的天气特征;S2:对找到的历史数据中的天气特征进行高斯拟合并计算签到地点的历史天气得分;S3:选择神经网络;S4:将所述历史天气得分分为训练集和测试集,并对所述神经网络进行学习和训练;S5:对训练好的神经网络通过所述测试集进行测试;S6:将当前的天气特征作为输入,通过训练出的神经网络计算出当前的天气得分。本发明考虑了以前没考虑到的天气特征对用户签到的影响,通过计算用户当前可达地点的天气得分就能很好的预测其下一个兴趣点。
-
公开(公告)号:CN108364098B
公开(公告)日:2020-11-20
申请号:CN201810129059.9
申请日:2018-02-08
Applicant: 重庆邮电大学
IPC: G06F30/27
Abstract: 本发明涉及一种天气特征对用户签到影响的度量方法,该方法包含如下步骤:S1:通过历史数据分析找到对用户签到影响较大的天气特征;S2:对找到的历史数据中的天气特征进行高斯拟合并计算签到地点的历史天气得分;S3:选择神经网络;S4:将所述历史天气得分分为训练集和测试集,并对所述神经网络进行学习和训练;S5:对训练好的神经网络通过所述测试集进行测试;S6:将当前的天气特征作为输入,通过训练出的神经网络计算出当前的天气得分。本发明考虑了以前没考虑到的天气特征对用户签到的影响,通过计算用户当前可达地点的天气得分就能很好的预测其下一个兴趣点。
-