-
公开(公告)号:CN110348383B
公开(公告)日:2020-07-31
申请号:CN201910625253.0
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
Abstract: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN110443816A
公开(公告)日:2019-11-12
申请号:CN201910729774.0
申请日:2019-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 胡艳 , 李朋龙 , 连蓉 , 王亚林 , 张泽烈 , 徐永书 , 李怡静 , 胡翔云 , 丁忆 , 罗鼎 , 段松江 , 吴凤敏 , 王小攀 , 陈静 , 钱进 , 范文武 , 刘建 , 李晓龙 , 郑中 , 谭攀
Abstract: 本发明公开了一种基于道路交叉口检测的遥感影像上城市道路提取方法,包括步骤:建立道路交叉口模型,基于遥感影像提取初始道路线;对初始道路线进行求交运算提取初始道路交叉点,并构建初始道路网络;基于影像分割和交叉口轮廓形状分析法对初始道路交叉点进行检测与验证,获取交叉点的类型及其连通的道路方向;根据交叉点的类型选取正确的交叉点,结合其连通的道路方向,构建目标城市道路网络。其显著效果是:基于道路交叉口提取城市道路,为城市道路网提取提供了稳定可靠的提取结果,完整度、准确率更高,有效克服了现有技术中算法不具备普适性、对道路特征和地物情况要求较高等不足。
-
公开(公告)号:CN110443770A
公开(公告)日:2019-11-12
申请号:CN201910737998.6
申请日:2019-08-12
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 丁忆 , 李朋龙 , 连蓉 , 王亚林 , 徐永书 , 张泽烈 , 叶立志 , 胡翔云 , 胡艳 , 陈静 , 罗鼎 , 段松江 , 刘金龙 , 陈甲全 , 吴凤敏 , 王小攀 , 钱进 , 魏文杰 , 曾远文 , 李晓龙
IPC: G06T5/00
Abstract: 本发明公开了一种基于离散粗糙度估计的机载激光点云数据噪声检测方法,包括步骤:读取机载激光点云数据,并构建离散点云TIN模型;根据离散点云TIN模型,获取模型中各顶点的一环邻域、二环邻域;采用离散粗糙度估计算子,计算各点的离散粗糙度;计算各点的二环邻域离散粗糙度均值和二环邻域粗糙度标准差;计算各点的二环邻域高程均值和二环邻域高程标准差;标记噪声点。其显著效果是:提高了机载激光点云数据噪声检测的智能化程度,极大地提高了机载激光点云数据处理效率及后续处理精度。
-
公开(公告)号:CN118585589B
公开(公告)日:2024-12-06
申请号:CN202410623241.5
申请日:2024-05-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种面向自然资源地表覆盖的像元光谱库构建方法,本发明基于国土三调或地理国情或其他自然资源地表覆盖空间矢量数据为基础,采用图斑筛选、像元采集点净化等方法,获得均质性较好的像元采集点,并形成包含时间、空间、光谱、标识等不同维度属性信息的像元光谱库。该方法不受高光谱影像辐射校正、大气校正中误差叠加影响,为自然资源地表覆盖精细识别提供了海量像元光谱库。
-
公开(公告)号:CN118585589A
公开(公告)日:2024-09-03
申请号:CN202410623241.5
申请日:2024-05-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种面向自然资源地表覆盖的像元光谱库构建方法,本发明基于国土三调或地理国情或其他自然资源地表覆盖空间矢量数据为基础,采用图斑筛选、像元采集点净化等方法,获得均质性较好的像元采集点,并形成包含时间、空间、光谱、标识等不同维度属性信息的像元光谱库。该方法不受高光谱影像辐射校正、大气校正中误差叠加影响,为自然资源地表覆盖精细识别提供了海量像元光谱库。
-
公开(公告)号:CN117315455A
公开(公告)日:2023-12-29
申请号:CN202310046948.X
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明通过高分辨的遥感影像设计云信息表征指数、自适应阈值分割初步提取云体、几何特征过滤非云对象和提纯云体、设计形态学滤云算子进一步提纯精化,最后通过云体栅格转为矢量并统计云量实现检测,相比于机器学习和深度学习云检测方法对样本数据的依赖,本发明人工参与少、自动化程度高、检测结果具有显著的云团几何形态优势,仅利用云层的亮度和几何形态特征,实现对高分辨率遥感影像自动化精准云检测,检测过程简单,可为高分辨率影像的质量检查、无云影像筛选,以及云覆盖区域的影像补采、填补生成无云影像等生产工序提供支撑,具有较强的泛化性和实用性。
-
公开(公告)号:CN110991359A
公开(公告)日:2020-04-10
申请号:CN201911243932.8
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 曾安明 , 李晓龙 , 马泽忠 , 肖禾 , 罗鼎 , 段松江 , 胡艳 , 王岚 , 陈静 , 刘金龙 , 刘朝晖 , 魏文杰 , 谭攀 , 范文武 , 林熙 , 刘建 , 叶涛 , 袁力
Abstract: 本发明公开了一种基于多尺度深度卷积神经网络的卫星图像目标检测方法,包括步骤收集卫星图像训练数据集,并进行样本标注;对卫星图像训练数据集进行预处理;搭建多尺度深度卷积神经网络;将预处理后的训练数据集输入到基于所述多尺度深度卷积神经网络的目标检测框架进行训练,获得训练好的目标检测神经网络;输入待检测卫星图像集,采用训练好的所述目标检测神经网络进行目标检测,输出识别结果。其显著效果是:提高了网络对于细粒度特征的检测结果以及区分不同物体的能力,改善了对于小物体和密集物体群的检测效果,具有更强的鲁棒性,有效地提高了目标检测效率,降低了硬件需求。
-
公开(公告)号:CN117932547A
公开(公告)日:2024-04-26
申请号:CN202410198542.8
申请日:2024-02-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06F18/25 , G06N3/0442 , G06N3/08 , G06N3/047
Abstract: 本发明提供了一种基于深度学习的植被叶面积指数动态估算方法,通过采用基于深度学习算法LSTM模型,利用多个LAI遥感产品和地表反射率数据,反演了不同时间的LAI数据,得到完整的LAI时间序列。该方法不仅可以准确的估算LAI值,而且能够提高LAI的时空连续性,实现了时间和空间连续的LAI的反演。在运用LSTM模型前,先利用双重logistic函数对所选择的LAI遥感观测数据进行融合,双重logistic函数融合技术能够进一步提高原始LAI遥感数据的质量,保证了输入数据的准确性,较大程度上提高了利用LSTM模型估算的可靠性和稳定性。引入了贝叶斯模型平均法以融合基于LSTM模型的多种LAI估算数据,生成最终的LAI数据,进一步保证了LAI数据的时空连续性和一致性,提高了LAI估算数据的准确性。
-
公开(公告)号:CN117933825B
公开(公告)日:2025-01-07
申请号:CN202410201622.4
申请日:2024-02-23
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06Q10/0639 , G06Q50/26
Abstract: 本发明提供一种基于多光谱无人机的森林保护修复生态成效评估方法,包括:获取相关数据得到评估区域的空间范围,并基于评估区域选定参照生态系统;根据评估区域和参照生态系统划定多光谱无人机的影像采集范围,得到多光谱遥感数据;结合森林保护修复措施,选定生态指标,基于生态指标构建森林保护修复生态成效评估指标体系;将必选指标和至少两个选择性指标作为评估指标,建立森林保护修复生态成效指数;根据多光谱遥感数据,计算评估区域和参照生态系统的评估指标,并对评估指标进行分级和赋权;根据所有评估指标及对应权重计算生态成效综合得分,分析得到评估结果。本发明能够实现对修复成效的快速量化评估,提高评估工作的便捷性和科学性。
-
公开(公告)号:CN118918416A
公开(公告)日:2024-11-08
申请号:CN202410983697.2
申请日:2024-07-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/774 , G06V10/26 , G06V10/764 , G06V10/82 , G06V10/40 , G06V10/44 , G06V10/54 , G06V20/10
Abstract: 本发明公开了一种基于置信学习的建筑物语义分割样本集错误样本剔除方法,包括:步骤1、将历史建筑物成果矢量和高分辨率影像裁切为S个初始建筑物语义分割样本;步骤2、提取所述样本的各样本影像特征图;步骤3、以每个样本中单像素邻域为处理单元,将初始建筑物语义分割样本转换为邻域图像块识别样本;步骤4、构建置信学习模型;步骤5、邻域图像块识别样本采用K折交叉验证估计噪声标签和真实标签的联合分布;步骤6、使用噪声标签和真实标签的联合分布查找错误标签,通过错误标签在初始建筑物语义分割样本中的占比,根据置信度阀值法估计出初始建筑物语义分割样本集中的错误样本。本发明能快速查找出建筑物语义分割样本集中的错误样本。
-
-
-
-
-
-
-
-
-