-
公开(公告)号:CN110991359A
公开(公告)日:2020-04-10
申请号:CN201911243932.8
申请日:2019-12-06
发明人: 丁忆 , 李朋龙 , 曾安明 , 李晓龙 , 马泽忠 , 肖禾 , 罗鼎 , 段松江 , 胡艳 , 王岚 , 陈静 , 刘金龙 , 刘朝晖 , 魏文杰 , 谭攀 , 范文武 , 林熙 , 刘建 , 叶涛 , 袁力
摘要: 本发明公开了一种基于多尺度深度卷积神经网络的卫星图像目标检测方法,包括步骤收集卫星图像训练数据集,并进行样本标注;对卫星图像训练数据集进行预处理;搭建多尺度深度卷积神经网络;将预处理后的训练数据集输入到基于所述多尺度深度卷积神经网络的目标检测框架进行训练,获得训练好的目标检测神经网络;输入待检测卫星图像集,采用训练好的所述目标检测神经网络进行目标检测,输出识别结果。其显著效果是:提高了网络对于细粒度特征的检测结果以及区分不同物体的能力,改善了对于小物体和密集物体群的检测效果,具有更强的鲁棒性,有效地提高了目标检测效率,降低了硬件需求。
-
公开(公告)号:CN117726687B
公开(公告)日:2024-06-21
申请号:CN202311851986.9
申请日:2023-12-29
摘要: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
公开(公告)号:CN117726687A
公开(公告)日:2024-03-19
申请号:CN202311851986.9
申请日:2023-12-29
摘要: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
-