-
公开(公告)号:CN113567818B
公开(公告)日:2024-05-03
申请号:CN202110938122.5
申请日:2021-08-16
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 本申请公开了一种基于悬臂支撑结构的法珀式局部放电传感装置及方法,装置包括:包括激光器、耦合器、环形器、基于悬臂支撑结构的法珀式局部放电传感器、光电探测器、数据采集卡、控制器和处理器;激光器产生激光,耦合器耦合后经环形器传输至局部放电传感器;局部放电传感器反射激光信号,解调反射的激光信号实现局部放电检测;环形器将局部放电传感器反射的激光信号传输至光电探测器,光电探测器将激光信号转换为电压信号;数据采集卡采集电压信号并将其传输至处理器;处理器基于电压信号控制控制器调节激光器输出波长,稳定传感器的静态工作点。本发明局部放电检测灵敏度高,抗电磁干扰,绝缘性能强。
-
公开(公告)号:CN113589113B
公开(公告)日:2023-01-31
申请号:CN202110862816.5
申请日:2021-07-29
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 本申请公开了一种基于光纤法珀干涉仪的局部放电多频联合传感阵列,包括激光器、第一光纤耦合器、第二光纤耦合器、光电探测器、滤波器、数据采集卡、N个光纤环形器和N个光纤法珀干涉仪;激光器提供窄带激光,经第一光纤耦合器分为N束窄带激光分别输入N个光纤环形器,前向传输的激光经光纤环形器后,分别输入光纤法珀干涉仪中产生干涉,干涉后的反射光,后向传输,经光纤环形器后,输入第二光纤耦合器,经第二光纤耦合器耦合后输入光电探测器,经光电探测器转换为电压信号输入滤波器,经滤波器进行带通滤波放大后输入数据采集卡。本发明可解决传统局部放电超声传感器检测频带窄、灵敏度低的问题,具有结构简单,成本低,使用方便等特点。
-
公开(公告)号:CN113687195A
公开(公告)日:2021-11-23
申请号:CN202110931995.3
申请日:2021-08-13
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
Abstract: 本申请公开了一种电气设备放电类故障模拟装置和方法,装置包括正弦波高频振荡升压电路、控制面板、无线传输模块、无线远程控制器、电极连杆、放电电极;正弦波高频振荡升压电路产生脉冲高电压;控制面板显示装置的工作状态;与无线远程控制器配合,切换装置工作状态;控制正弦波高频振荡升压电路产生脉冲高电压;无线传输模块接收无线控制信号;无线远程控制器产生无线控制信号,进行装置放电的远程控制;电极连杆在不同的位置产生放电;放电电极模拟不同的放电类型。本发明可模拟各类电气设备的典型放电类故障,以便于研究人员开展电气设备放电类故障的在线监测技术研究,具有体积小、结构简单,成本低,使用方便等特点。
-
公开(公告)号:CN113589113A
公开(公告)日:2021-11-02
申请号:CN202110862816.5
申请日:2021-07-29
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 本申请公开了一种基于光纤法珀干涉仪的局部放电多频联合传感阵列,包括激光器、第一光纤耦合器、第二光纤耦合器、光电探测器、滤波器、数据采集卡、N个光纤环形器和N个光纤法珀干涉仪;激光器提供窄带激光,经第一光纤耦合器分为N束窄带激光分别输入N个光纤环形器,前向传输的激光经光纤环形器后,分别输入光纤法珀干涉仪中产生干涉,干涉后的反射光,后向传输,经光纤环形器后,输入第二光纤耦合器,经第二光纤耦合器耦合后输入光电探测器,经光电探测器转换为电压信号输入滤波器,经滤波器进行带通滤波放大后输入数据采集卡。本发明可解决传统局部放电超声传感器检测频带窄、灵敏度低的问题,具有结构简单,成本低,使用方便等特点。
-
公开(公告)号:CN113589114B
公开(公告)日:2024-05-31
申请号:CN202110863617.6
申请日:2021-07-29
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
Abstract: 本申请公开了一种电力设备局部放电传感装置及其加工方法、检测系统,所述装置包括传感器封装外壳、光纤光栅、弹性膜片和微质量块;微质量块,固定在光纤光栅栅区两端处;光纤光栅位于封装外壳中央;弹性膜片位于光纤光栅两端,与两个微质量块贴合,微质量块避免膜片中心形成过大的形变;膜片边缘固定于封装外壳上,实现膜片振动的放大;同侧的弹性膜片、光纤光栅固定于封装外壳上;封装外壳内部注满绝缘油。本发明通过将光纤光栅固定于膜片的中心来放大膜片接收到的超声振动信号,并结合膜片结构参数设计和添加微质量块来增大了传感器的灵敏度,通过双膜片对称结构消除传感器自身振动对测量结果的影响,扩大了传感器的可探测范围。
-
公开(公告)号:CN116047241A
公开(公告)日:2023-05-02
申请号:CN202310002489.5
申请日:2023-01-03
Applicant: 国网湖北省电力有限公司电力科学研究院 , 重庆大学
IPC: G01R31/12
Abstract: 一种内置光纤迈克尔逊GIS局部放电超声传感系统。基于光纤迈克尔逊干涉仪的内置局部放电超声传感技术,可以灵活安装传感器在GIS内部易于发生局部放电的器件附近甚至表面,其中光纤环结构的设计也极大的增加了对各类声学信号的超声传感灵敏度,可以实现对GIS内部尖端放电、自由颗粒放电和沿面放电等自由声场微弱超声信号的测量。
-
公开(公告)号:CN115902551A
公开(公告)日:2023-04-04
申请号:CN202211482172.8
申请日:2022-11-24
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 一种基于光纤传感阵列的变压器内局部放电定位方法,包括:加工三角形超声传感阵列,其中,三角形超声传感阵列包括:至少3个光纤法珀传感器;将波长可调谐激光器输出端接入1×3光纤耦合器,由1×3光纤耦合器分出3条光纤分别接入3个光纤环形器;3个光纤环形器均接入光纤法珀传感器,3个光纤环形器分别连接3个光电探测器;将3个光电探测器输出端连入信号采集卡输入端,并存储信号数据,将信号采集卡中的数据存入计算机;对采集到的信号数据进行小波阈值去噪;对去噪后的信号数据运用广义互相关函数,以提取时间延迟信息;依据得到的时间延迟信息,采用人工萤火虫与聚类分析联合优化算法求解局部放电源的准确位置。
-
公开(公告)号:CN113589114A
公开(公告)日:2021-11-02
申请号:CN202110863617.6
申请日:2021-07-29
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
Abstract: 本申请公开了一种电力设备局部放电传感装置及其加工方法、检测系统,所述装置包括传感器封装外壳、光纤光栅、弹性膜片和微质量块;微质量块,固定在光纤光栅栅区两端处;光纤光栅位于封装外壳中央;弹性膜片位于光纤光栅两端,与两个微质量块贴合,微质量块避免膜片中心形成过大的形变;膜片边缘固定于封装外壳上,实现膜片振动的放大;同侧的弹性膜片、光纤光栅固定于封装外壳上;封装外壳内部注满绝缘油。本发明通过将光纤光栅固定于膜片的中心来放大膜片接收到的超声振动信号,并结合膜片结构参数设计和添加微质量块来增大了传感器的灵敏度,通过双膜片对称结构消除传感器自身振动对测量结果的影响,扩大了传感器的可探测范围。
-
公开(公告)号:CN113567819A
公开(公告)日:2021-10-29
申请号:CN202110945267.8
申请日:2021-08-17
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 本发明公开了一种基于透镜光纤的F‑P光纤传感放电检测装置及方法,所述放电检测装置包括分布式反馈激光器、环形器、光电探测器,F‑P传感器,采集与控制模块和信号处理模块;其中,所述分布式反馈激光器发出的激光经过所述环形器输入所述F‑P传感器,所述F‑P传感器的反射光经过所述环形器输入所述光电探测器并被转化为电信号,所述光电探测器将电信号经过所述采集与控制模块输入所述信号处理模块,所述信号处理模块通过检测反射光光强的变化实现局部放电的检测。本发明能够实现放电检测装置中F‑P传感器的低光功率损耗,同时提高了放电检测装置对于局部放电的检测灵敏度。
-
公开(公告)号:CN113567818A
公开(公告)日:2021-10-29
申请号:CN202110938122.5
申请日:2021-08-16
Applicant: 重庆大学 , 国网湖北省电力有限公司电力科学研究院
IPC: G01R31/12
Abstract: 本申请公开了一种基于悬臂支撑结构的法珀式局部放电传感装置及方法,装置包括:包括激光器、耦合器、环形器、基于悬臂支撑结构的法珀式局部放电传感器、光电探测器、数据采集卡、控制器和处理器;激光器产生激光,耦合器耦合后经环形器传输至局部放电传感器;局部放电传感器反射激光信号,解调反射的激光信号实现局部放电检测;环形器将局部放电传感器反射的激光信号传输至光电探测器,光电探测器将激光信号转换为电压信号;数据采集卡采集电压信号并将其传输至处理器;处理器基于电压信号控制控制器调节激光器输出波长,稳定传感器的静态工作点。本发明局部放电检测灵敏度高,抗电磁干扰,绝缘性能强。
-
-
-
-
-
-
-
-
-