基于隐空间样例学习的非线性压缩光谱成像方法

    公开(公告)号:CN105844591B

    公开(公告)日:2018-08-21

    申请号:CN201610015219.8

    申请日:2016-01-11

    Abstract: 本发明公开了一种基隐空间样例学习的非线性压缩光谱成像方法,主要解决现有技术在利用核函数进行非线性空间下的字典学习中时间复杂度和空间复杂度过高的问题。其实现步骤为:1.对训练样本进行预处理,获得虚拟训练样本;2.通过线性字典学习的方法对虚拟训练样本进行训练,获得稀疏字典;3.随机初始化观测矩阵,通过核压缩感知的方法实现非线性压缩感知光谱成像;4.利用pre‑image方法恢复出原信号。实验结果表明:在相同的采样率下,本发明方法同现有KPCA的字典学习方法相比,其重构效果较好,且时间复杂度大大降低,可用于高光谱图像的低速率采样和恢复。

    基于维数约简的集成迁移文本分类方法

    公开(公告)号:CN103218405A

    公开(公告)日:2013-07-24

    申请号:CN201310090096.0

    申请日:2013-03-20

    Abstract: 本发明公开了一种基于维数约简的集成迁移文本分类方法,包括步骤:1.入源域文本数据和目标域文本数据,进行预处理,将文本数据转化为单词向量形式;2.标记的源域数据集进行Boostrap随机采样遍,获取相应的个源域子集,再别与目标域测试样本组合成新的数据子集;3.个新的数据子集进行SVD分解并降维,投影到低维空间;4.低维空间中,采用近邻分类器作为基本分类器,由降维后的源域样本预测目标域测试样本的标签,每个测试样本得到个预测标签;5.多数投票的集成方式,得到测试文本数据的最终预测标签。本发明利用过期的源域样本对目标域文本分类,经维数约简后集成,大大提高了分类的正确率,并减少分类时间,降低分类复杂度。

Patent Agency Ranking