基于维数约简的集成迁移文本分类方法

    公开(公告)号:CN103218405A

    公开(公告)日:2013-07-24

    申请号:CN201310090096.0

    申请日:2013-03-20

    Abstract: 本发明公开了一种基于维数约简的集成迁移文本分类方法,包括步骤:1.入源域文本数据和目标域文本数据,进行预处理,将文本数据转化为单词向量形式;2.标记的源域数据集进行Boostrap随机采样遍,获取相应的个源域子集,再别与目标域测试样本组合成新的数据子集;3.个新的数据子集进行SVD分解并降维,投影到低维空间;4.低维空间中,采用近邻分类器作为基本分类器,由降维后的源域样本预测目标域测试样本的标签,每个测试样本得到个预测标签;5.多数投票的集成方式,得到测试文本数据的最终预测标签。本发明利用过期的源域样本对目标域文本分类,经维数约简后集成,大大提高了分类的正确率,并减少分类时间,降低分类复杂度。

    基于隐空间样例学习的非线性压缩光谱成像方法

    公开(公告)号:CN105844591B

    公开(公告)日:2018-08-21

    申请号:CN201610015219.8

    申请日:2016-01-11

    Abstract: 本发明公开了一种基隐空间样例学习的非线性压缩光谱成像方法,主要解决现有技术在利用核函数进行非线性空间下的字典学习中时间复杂度和空间复杂度过高的问题。其实现步骤为:1.对训练样本进行预处理,获得虚拟训练样本;2.通过线性字典学习的方法对虚拟训练样本进行训练,获得稀疏字典;3.随机初始化观测矩阵,通过核压缩感知的方法实现非线性压缩感知光谱成像;4.利用pre‑image方法恢复出原信号。实验结果表明:在相同的采样率下,本发明方法同现有KPCA的字典学习方法相比,其重构效果较好,且时间复杂度大大降低,可用于高光谱图像的低速率采样和恢复。

    一种基于对称和局部判别的生成对抗人脸校正方法及系统

    公开(公告)号:CN113378721B

    公开(公告)日:2023-08-18

    申请号:CN202110657280.3

    申请日:2021-06-11

    Abstract: 本发明公开了一种基于对称和局部判别的生成对抗人脸校正方法及系统,构造并训练基于对称性先验和局部判别的多路生成对抗网络,该网络包括多路生成器、全局图像判别器、局部区域判别器、全局图像特征提取网络和局部区域特征提取网络。依据人脸对称性这一先验知识,统一人脸偏转方向为正偏转方向,采用局部生成器对发生纹理和结构形变较小的左眼区域进行校正,水平翻转校正后的左眼区域作为校正后的右眼区域;同时对生成的正脸图像提取对应的局部区域进行图像判别和身份判别,使得最终生成的正脸图像在双眼区域与真实的正脸图像能够保持较好的一致性,同时能够更好的恢复局部纹理细节。

    基于空间位置特征重加权的小样本目标检测方法及系统

    公开(公告)号:CN113240039B

    公开(公告)日:2023-08-15

    申请号:CN202110605399.6

    申请日:2021-05-31

    Abstract: 本发明公开了基于空间位置特征重加权的小样本目标检测方法及系统,按照基类和新类构造支持集和查询集样本;构造基于目标完整性的特征融合模块;构造基于空间位置信息的特征调整模块;使用两阶段的训练方式对整个网络进行训练,该网络包括特征提取器、基于目标完整性的特征融合模块、元学习器、基于空间位置信息的特征调整模块和检测层;在基类训练阶段,使用基类构造的支持集和查询样本训练;在小样本微调阶段,使用基类和新类构造的平衡数据集训练;输入新类的测试和支持集图像,得到检测结果;本发明利用多个浅层特征并维持目标结构的完整性,同时,通过生成包含空间位置信息的元特征,对查询样本特征进行空间维度的调整,提高目标检测效果。

Patent Agency Ranking