基于GMM参数迁移聚类的SAR图像分割方法

    公开(公告)号:CN102360496B

    公开(公告)日:2013-06-26

    申请号:CN201110318739.3

    申请日:2011-10-19

    Abstract: 本发明公开了一种基于GMM参数迁移聚类的SAR图像分割技术方法,主要解决现有技术分割结果不稳定、精度和区域一致性不理想的问题。其实现过程是:1)输入图像,确定分割类数;2)提取特征;3)设置初始参数;4)对样本聚类7次,得到7组聚类结果;5)求聚类一致性值;6)根据聚类一致性值把样本划分成源域和目标域;7)用EM算法对源域进行参数估计;8)寻找目标域样本在源域样本中的K近邻点并求出这些点的聚类一致性值;9)根据K近邻点的一致性值和源域参数,求目标域的新参数;10)根据新参数求目标域每个样本的概率值,得到图像最终分割结果。本发明具有分割效果稳定良好、区域一致性好的优点,可用于雷达目标检测和识别。

    基于GMM参数迁移聚类的SAR图像分割方法

    公开(公告)号:CN102360496A

    公开(公告)日:2012-02-22

    申请号:CN201110318739.3

    申请日:2011-10-19

    Abstract: 本发明公开了一种基于GMM参数迁移聚类的SAR图像分割技术方法,主要解决现有技术分割结果不稳定、精度和区域一致性不理想的问题。其实现过程是:1)输入图像,确定分割类数;2)提取特征;3)设置初始参数;4)对样本聚类7次,得到7组聚类结果;5)求聚类一致性值;6)根据聚类一致性值把样本划分成源域和目标域;7)用EM算法对源域进行参数估计;8)寻找目标域样本在源域样本中的K近邻点并求出这些点的聚类一致性值;9)根据K近邻点的一致性值和源域参数,求目标域的新参数;10)根据新参数求目标域每个样本的概率值,得到图像最终分割结果。本发明具有分割效果稳定良好、区域一致性好的优点,可用于雷达目标检测和识别。

    基于MOD字典学习采样的谱聚类图像分割方法

    公开(公告)号:CN102436645A

    公开(公告)日:2012-05-02

    申请号:CN201110346656.5

    申请日:2011-11-04

    Abstract: 本发明公开了一种基于字典学习采样谱聚类的图像分割方法,主要解决现有谱聚类方法分割结果不稳定的问题。其实现过程是:(1)对待分割的图像进行特征提取,并将提取的特征数据归一化到[0,1]之间,以去除数据间量级的影响;(2)用MOD字典学习方法对归一化后的特征数据进行学习,得到字典D;(3)计算特征数据与字典原子的欧氏距离,并取距离小的前l个数据作为采样子集S,l取300;4)利用方法,从选出的采样子集S得到所有特征数据的特征向量;(5)对前k个特征值对应的特征向量进行k-means聚类,得到最终的图像分割结果。本发明与现有的技术相比图像分割结果稳定、准确度高,可用于目标检测和目标识别。

    基于字典学习的胃部CT图像感兴趣区域检测系统

    公开(公告)号:CN102436584B

    公开(公告)日:2013-09-25

    申请号:CN201110346515.3

    申请日:2011-11-04

    Abstract: 本发明公开了一种基于字典学习的胃部CT图像感兴趣区域检测方法,主要解决现有胃部CT图像中包含无关信息较多的问题。整个系统包括:训练单元和测试单元;训练单元,首先生成训练图像块,再对训练图像块提取特征值组成感兴趣矩阵和不感兴趣矩阵,最后采用字典学习方法训练得到感兴趣字典和不感兴趣字典;测试单元,先输入待测试图像,再对待测试图像进行脂肪组织的检测,并去除脂肪组织边缘,最后对脂肪组织中的淋巴结空洞进行填充,得到包含淋巴结的感兴趣区域,并输出检测结果。本发明能有效去除胃部CT图像的无关信息,保留医生感兴趣的淋巴结,可用于医学图像的处理。

    基于MOD字典学习采样的谱聚类图像分割方法

    公开(公告)号:CN102436645B

    公开(公告)日:2013-08-14

    申请号:CN201110346656.5

    申请日:2011-11-04

    Abstract: 本发明公开了一种基于字典学习采样谱聚类的图像分割方法,主要解决现有谱聚类方法分割结果不稳定的问题。其实现过程是:(1)对待分割的图像进行特征提取,并将提取的特征数据归一化到[0,1]之间,以去除数据间量级的影响;(2)用MOD字典学习方法对归一化后的特征数据进行学习,得到字典D;(3)计算特征数据与字典原子的欧氏距离,并取距离小的前l个数据作为采样子集S,l取300;4)利用方法,从选出的采样子集S得到所有特征数据的特征向量;(5)对前k个特征值对应的特征向量进行k-means聚类,得到最终的图像分割结果。本发明与现有的技术相比图像分割结果稳定、准确度高,可用于目标检测和目标识别。

    基于相似度对比的目标检测方法及其装置

    公开(公告)号:CN115631352A

    公开(公告)日:2023-01-20

    申请号:CN202211174426.X

    申请日:2022-09-26

    Abstract: 本发明公开了一种基于相似度对比的目标检测方法及其装置,涉及图片处理技术领域,包括:基于目标图片样本,生成候选框;基于候选框,进行目标特征提取,构建待选特征数据库;基于已有的图片样本,进行目标特征提取,构建标准特征数据库;从待选特征数据库中,获取置信度最高的候选框,将该候选框与标准特征数据库进行相似度对比,得到分数最高的标准特征数据库图片,并记录其类别信息;将分数最高的标准特征数据库图片与待选特征数据库进行相似度对比,得到分数最高的待选特征数据库图片,并记录其位置信息;将类别信息和位置信息映射到目标图片样本,得到待检测目标的检测结果。本申请能够提高目标定位的准确率,提高目标检测的效果。

Patent Agency Ranking