-
公开(公告)号:CN113886521B
公开(公告)日:2025-02-18
申请号:CN202111070442.X
申请日:2021-09-13
Applicant: 苏州空天信息研究院
IPC: G06F16/334 , G06F40/194 , G06F40/295 , G06F40/30
Abstract: 本发明提出一种基于相似词汇表的文本关系自动标注方法,确定所有抽取的关系名称以及对应的实体类型,并获取含有关系名称的语料;在语料中每个出现关系名称的地方生成可替代该关系名称的相似词汇表,并以此整理出关系类型词汇表;对句子进行命名体识别以及实体关系三元组提取;依据命名体识别的结果判断实体关系三元组的实体对是否满足条件,生成候选关系集合;对实体关系三元组中关系短语的每个词汇生成相似词汇表,结合关系类型词汇表,判断该词汇表达的候选关系,所有词汇中表达次数最多的候选关系即为标注关系,完成自动标注。本发明解决了传统远程监督方法构建知识库难度大、标注语料质量低的问题,为构建关系抽取模型所需的数据集提供了新的策略。
-
公开(公告)号:CN114281941B
公开(公告)日:2024-12-03
申请号:CN202111513041.7
申请日:2021-12-11
Applicant: 苏州空天信息研究院
IPC: G06F16/33 , G06F40/194 , G06F40/30 , G06N3/0442 , G06N3/09
Abstract: 本发明提出了一种基于共享语义空间的远程监督关系抽取方法,将远程监督标注的数据划分为不含噪数据集和含噪声数据集;将句子的句向量和实体对的位置向量拼接作为BiLSTM网络的输入向量,分别提取含噪声数据集和不含噪数据集中的实体对特征;将实体对特征和关系类型表征映射到同一语义空间中;统计两个关系类型共有的实体类别数量,计算关系类型间的相关度,对不含噪数据集和含噪声数据集分别建模,学习实体对映射矩阵和关系类型映射矩阵;将实体对和关系类型通过学习到的映射矩阵映射到共享语义空间,计算实体对和关系类型的相似度得分,得分最高的关系类型为该实体对的关系。本发明解决了处理复杂关系时存在的语义漂移严重、数据噪声大等问题。
-
公开(公告)号:CN115357794A
公开(公告)日:2022-11-18
申请号:CN202211019358.X
申请日:2022-08-24
Applicant: 苏州空天信息研究院
IPC: G06F16/9535 , G06F40/30 , G06Q30/02 , G06Q30/06 , G06N3/08
Abstract: 本发明提出了一种基于张量分解的动态个性化推荐方法,对反映用户兴趣特征的用户‑物品‑时间关联网络数据进行统计,得到用户、物品和时间戳构成的集合,并对集合中的元素进行ID编号;将用户集合、物品集合和时间戳集合中的元素随机映射至语义向量空间中,建立用户、物品和时间戳到兴趣语义空间的初步映射关系;构建语义空间下用户、物品和时间之间的语义关联关系,使用户、物品和时间能够正确映射到语义空间中;根据用户、物品和时间到语义空间的语义关联关系,训练最优动态个性化推荐模型,预测用户的兴趣点,完成个性化推荐任务。本发明能有效学习用户随时间动态变化的兴趣,提升了个性化推荐的效果。
-
公开(公告)号:CN114547292B
公开(公告)日:2025-02-18
申请号:CN202210022512.2
申请日:2022-01-10
Applicant: 苏州空天信息研究院
IPC: G06F16/35 , G06F40/194 , G06F40/30 , G06N3/0442 , G06N3/096
Abstract: 本发明提出了一种基于渐进迁移学习的细粒度实体分类方法,计算目标域的粗粒度标签与源域所有粗粒度标签的语义相似度,以及目标域的细粒度标签与源域所有细粒度标签的语义相似度;构建粗粒度标签映射集合和细粒度标签映射集合,计算语义相似度权重;通过BiLSTM网络提取语句的语义特征,得到源域粗粒度标签语句语义特征集合、细粒度标签语句语义特征集合以及目标域语义特征;计算整体粗粒度语义特征和整体细粒度语义特征,确定总的语义特征;将总的语义特征输入到softmax分类器,预测目标域选取的细粒度标签对应的实体标签;训练更新BiLSTM网络与softmax分类器参数,得到基于渐进迁移学习的细粒度实体分类模型。本发明提高了目标域细粒度实体分类准确性。
-
公开(公告)号:CN116542326A
公开(公告)日:2023-08-04
申请号:CN202310035450.3
申请日:2023-01-10
Applicant: 苏州空天信息研究院
IPC: G06N5/02 , G06N3/084 , G06F18/25 , G06F18/21 , G06N3/0464
Abstract: 本发明提出一种基于时序卷积的知识表示方法,构建实体、关系和时间的语义向量对照表,并在语义空间中随机初始化对应的语义向量;根据时间信息及其对应的时间语义向量,动态构造时序卷积核;利用时序卷积核与实体和关系对应的语义向量进行卷积,得到时序知识图谱中的动态特征信息;利用随机初始化的卷积核与实体和关系对应的语义向量进行卷积,得到时序知识图谱中的静态特征信息;通过多层神经网络融合提取的动态特征信息和静态特征信息,得到综合的特征信息;基于提取的综合特征信息,计算该特征信息下全部实体的概率值,取概率最高的实体作为预测结果,从而完成知识表示学习的预测任务。本发明可用于下游知识推理或融合,且提高了模拟预测精度。
-
公开(公告)号:CN115358227A
公开(公告)日:2022-11-18
申请号:CN202210385209.9
申请日:2022-04-13
Applicant: 苏州空天信息研究院
IPC: G06F40/289 , G06F40/242 , G06F40/126 , G06F40/284
Abstract: 本发明提出一种基于短语增强的开放域关系联合抽取方法及系统,通过BERT预训练语言模型对句子中的字符进行编码,提取句子特征向量表示;根据首实体短语标注模型,解码句子特征向量表示,抽取所有可能构成关系三元组的首实体短语;构建除首实体短语外的关系短语词汇增强词典,并将外部关系短语词汇表所包含的短语信息融合到句子特征向量表示中;根据关系短语和尾实体序列标注模型,抽取出首实体短语对应的所有关系短语和尾实体短语,构建该首实体的候选开放域关系三元组集合;根据开放域关系三元组的置信度,从候选开放域关系三元组集合中,选择置信度高于设定阈值的开放域关系三元组,作为该首实体的开放域关系三元组。本发明能够更好地整合关系短语和实体对短语之间的信息。
-
公开(公告)号:CN114281941A
公开(公告)日:2022-04-05
申请号:CN202111513041.7
申请日:2021-12-11
Applicant: 苏州空天信息研究院
IPC: G06F16/33 , G06F40/194 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明提出了一种基于共享语义空间的远程监督关系抽取方法,将远程监督标注的数据划分为不含噪数据集和含噪声数据集;将句子的句向量和实体对的位置向量拼接作为BiLSTM网络的输入向量,分别提取含噪声数据集和不含噪数据集中的实体对特征;将实体对特征和关系类型表征映射到同一语义空间中;统计两个关系类型共有的实体类别数量,计算关系类型间的相关度,对不含噪数据集和含噪声数据集分别建模,学习实体对映射矩阵和关系类型映射矩阵;将实体对和关系类型通过学习到的映射矩阵映射到共享语义空间,计算实体对和关系类型的相似度得分,得分最高的关系类型为该实体对的关系。本发明解决了处理复杂关系时存在的语义漂移严重、数据噪声大等问题。
-
公开(公告)号:CN113886521A
公开(公告)日:2022-01-04
申请号:CN202111070442.X
申请日:2021-09-13
Applicant: 苏州空天信息研究院
IPC: G06F16/33 , G06F40/194 , G06F40/295 , G06F40/30
Abstract: 本发明提出一种基于相似词汇表的文本关系自动标注方法,确定所有抽取的关系名称以及对应的实体类型,并获取含有关系名称的语料;在语料中每个出现关系名称的地方生成可替代该关系名称的相似词汇表,并以此整理出关系类型词汇表;对句子进行命名体识别以及实体关系三元组提取;依据命名体识别的结果判断实体关系三元组的实体对是否满足条件,生成候选关系集合;对实体关系三元组中关系短语的每个词汇生成相似词汇表,结合关系类型词汇表,判断该词汇表达的候选关系,所有词汇中表达次数最多的候选关系即为标注关系,完成自动标注。本发明解决了传统远程监督方法构建知识库难度大、标注语料质量低的问题,为构建关系抽取模型所需的数据集提供了新的策略。
-
公开(公告)号:CN114547292A
公开(公告)日:2022-05-27
申请号:CN202210022512.2
申请日:2022-01-10
Applicant: 苏州空天信息研究院
IPC: G06F16/35 , G06F40/194 , G06F40/30 , G06N3/04 , G06N3/08
Abstract: 本发明提出了一种基于渐进迁移学习的细粒度实体分类方法,计算目标域的粗粒度标签与源域所有粗粒度标签的语义相似度,以及目标域的细粒度标签与源域所有细粒度标签的语义相似度;构建粗粒度标签映射集合和细粒度标签映射集合,计算语义相似度权重;通过BiLSTM网络提取语句的语义特征,得到源域粗粒度标签语句语义特征集合、细粒度标签语句语义特征集合以及目标域语义特征;计算整体粗粒度语义特征和整体细粒度语义特征,确定总的语义特征;将总的语义特征输入到softmax分类器,预测目标域选取的细粒度标签对应的实体标签;训练更新BiLSTM网络与softmax分类器参数,得到基于渐进迁移学习的细粒度实体分类模型。本发明提高了目标域细粒度实体分类准确性。
-
-
-
-
-
-
-
-