基于时序图神经网络的网络信道瓶颈点检测及分配方法

    公开(公告)号:CN114900838A

    公开(公告)日:2022-08-12

    申请号:CN202210429514.3

    申请日:2022-04-22

    Abstract: 本发明公开了一种基于时序图神经网络的网络信道瓶颈点检测及分配方法,检测方法包括根据当前网络信道图Gi进行建立模型,当前网络信道图Gi包括点集V{v1,v2,...,vm}和边集E{e1,e2,e3,...,en},v1,v2,……,vm表示网络传输中的m个节点,且节点表示终端或基站;基于Gi中每个终端或基站的实时请求的资源数量以及该终端或基站的先前使用情况选择是否将与该终端或基站对应的节点作为候选点,得到k个候选点pi,将Gi中与该候选点pi相对应的节点vj以及该节点vj所连接的边去除,得到网络信道图Gi′,再计算Gi和Gi′的差异值Diffj,并将Diffj作为该候选点pi成为瓶颈点的概率值;比较所有的概率值并选择最大概率值所对应的候选点作为网络传输中的瓶颈点。本发明能够跟随通信网络变化且动态适应性分配网络资源。

    基于抽样子图的网络资源动态分配方法、系统及介质

    公开(公告)号:CN114826921B

    公开(公告)日:2024-05-17

    申请号:CN202210479810.4

    申请日:2022-05-05

    Abstract: 本发明公开了一种基于抽样子图的网络资源动态分配方法、系统及介质,包括对当前的网际网络和网络节点进行建模以得到图数据;确定图数据的最终特征向量;将最终特征向量输入抽样子图模型中进行处理,并计算隐层神经元被开启的概率分布,然后根据概率分布继续采样,并对显层神经元进行采样,从而更新网络的权重和偏置,并根据图数据的结构相似度来判断是否继续更新,若当前网络和上一次网络的结构相似度超过预设阈值时,则停止更新网络的权重和偏置;构建多层带权重的网络,并进行随机游走以得到满足预设条件的目标上下文,进而根据目标上下文中各个节点的状态自动分配网络资源。本发明不仅能够在小型网络中使用,更能在超大规模网络上进行网络资源分配。

    基于抽样子图的网络资源动态分配方法、系统及介质

    公开(公告)号:CN114826921A

    公开(公告)日:2022-07-29

    申请号:CN202210479810.4

    申请日:2022-05-05

    Abstract: 本发明公开了一种基于抽样子图的网络资源动态分配方法、系统及介质,包括对当前的网际网络和网络节点进行建模以得到图数据;确定图数据的最终特征向量;将最终特征向量输入抽样子图模型中进行处理,并计算隐层神经元被开启的概率分布,然后根据概率分布继续采样,并对显层神经元进行采样,从而更新网络的权重和偏置,并根据图数据的结构相似度来判断是否继续更新,若当前网络和上一次网络的结构相似度超过预设阈值时,则停止更新网络的权重和偏置;构建多层带权重的网络,并进行随机游走以得到满足预设条件的目标上下文,进而根据目标上下文中各个节点的状态自动分配网络资源。本发明不仅能够在小型网络中使用,更能在超大规模网络上进行网络资源分配。

    基于时序图神经网络的网络信道瓶颈点检测及分配方法

    公开(公告)号:CN114900838B

    公开(公告)日:2024-07-16

    申请号:CN202210429514.3

    申请日:2022-04-22

    Abstract: 本发明公开了一种基于时序图神经网络的网络信道瓶颈点检测及分配方法,检测方法包括根据当前网络信道图Gi进行建立模型,当前网络信道图Gi包括点集V{v1,v2,...,vm}和边集E{e1,e2,e3,...,en},v1,v2,……,vm表示网络传输中的m个节点,且节点表示终端或基站;基于Gi中每个终端或基站的实时请求的资源数量以及该终端或基站的先前使用情况选择是否将与该终端或基站对应的节点作为候选点,得到k个候选点pi,将Gi中与该候选点pi相对应的节点vj以及该节点vj所连接的边去除,得到网络信道图Gi′,再计算Gi和Gi′的差异值Diffj,并将Diffj作为该候选点pi成为瓶颈点的概率值;比较所有的概率值并选择最大概率值所对应的候选点作为网络传输中的瓶颈点。本发明能够跟随通信网络变化且动态适应性分配网络资源。

Patent Agency Ranking