-
公开(公告)号:CN105955921B
公开(公告)日:2019-03-26
申请号:CN201610238118.7
申请日:2016-04-18
Applicant: 苏州大学
IPC: G06N99/00
Abstract: 本发明公开了一种基于自动发现抽象动作的机器人分层强化学习初始化方法,其特征在于:包括Q学习模块、创建抽象动作模块、状态‑抽象动作评估值Q(s,o)初始化模块以及分层强化学习模块,先利用Q学习模块让机器人与环境交互产生经验,然后基于这些经验使用创建抽象动作模块让机器人创建抽象动作,最后机器人通过初始化状态‑抽象动作评估值Q(s,o)初始化模块,从普通的强化学习转向分层强化学习模块进行分层强化学习,并记录学习结果。本发明通过对状态‑抽象动作评估值Q(s,o)进行初始化,使机器人采用分层强化学习方法求解复杂环境中的任务时收敛速度更快。
-
公开(公告)号:CN105955921A
公开(公告)日:2016-09-21
申请号:CN201610238118.7
申请日:2016-04-18
Applicant: 苏州大学
IPC: G06F15/18
CPC classification number: G06N99/005
Abstract: 本发明公开了一种基于自动发现抽象动作的机器人分层强化学习初始化方法,其特征在于:包括Q学习模块、创建抽象动作模块、状态‑抽象动作评估值Q(s,o)初始化模块以及分层强化学习模块,先利用Q学习模块让机器人与环境交互产生经验,然后基于这些经验使用创建抽象动作模块让机器人创建抽象动作,最后机器人通过初始化状态‑抽象动作评估值Q(s,o)初始化模块,从普通的强化学习转向分层强化学习模块进行分层强化学习,并记录学习结果。本发明通过对状态‑抽象动作评估值Q(s,o)进行初始化,使机器人采用分层强化学习方法求解复杂环境中的任务时收敛速度更快。
-