一种基于机器学习的区域感知图像去噪方法

    公开(公告)号:CN108416756B

    公开(公告)日:2021-11-02

    申请号:CN201810255379.9

    申请日:2018-03-26

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于机器学习的区域感知图像去噪方法,包括以下步骤:1、对噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,获得不同去噪结果集;2、将采用σ分别与采用rj×σ的去噪结果相结合,获得最优缩小率和图像块对于采用σ和这两种去噪参数的偏好;3、对噪声图像和采用两种去噪参数的去噪结果进行特征提取;4、将获得的偏好特征集作为机器学习算法的特征集,学习获得图像块的去噪参数偏好模型;5、采用去噪参数偏好模型对测试集中噪声图像进行预测,获得每个图像块预测的偏好概率值;6、通过阈值处理并结合两种去噪参数的去噪结果,获得最终的去噪结果。该方法能够有效提高图像去噪方法的性能。

    一种时空一致的立体视频颜色校正方法

    公开(公告)号:CN109672874A

    公开(公告)日:2019-04-23

    申请号:CN201910157230.1

    申请日:2019-03-01

    Applicant: 福州大学

    Abstract: 本发明涉及一种时空一致的立体视频颜色校正方法,首先从参考视频帧和目标视频帧中每隔a帧选出一对关键帧,在每个时间滑动窗口内选取k对;接着对于每一对关键帧,采用图像颜色校正算法获得目标视频关键帧的初始颜色校正结果帧,然后利用引导滤波计算得到和输入的目标视频关键帧结构更加一致的颜色校正结果视频帧;然后在时间滑动窗口内,利用改进的直方图匹配求出目标视频关键帧和颜色校正后的目标视频关键帧之间的颜色映射函数;最后用该颜色映射函数校正位于时间滑动窗口中心的a帧目标视频帧,得到a帧颜色校正后的最终目标视频帧。本发明对于立体视频颜色差异能够起到很好的校正效果。

    一种结合边缘信息的图像去噪方法

    公开(公告)号:CN108550119A

    公开(公告)日:2018-09-18

    申请号:CN201810262921.3

    申请日:2018-03-27

    Applicant: 福州大学

    Abstract: 本发明涉及一种结合边缘信息的图像去噪方法,包括以下步骤:步骤S1:对噪声图像采用加噪标准差σ作为去噪参数进行去噪,获得第一去噪结果;步骤S2:对不同噪声幅度下的噪声图像采用不同缩小率缩小后的标准差r×σ作为去噪参数进行去噪,获得第二去噪结果;步骤S3:对第一去噪结果计算图像边缘信息,得到边缘图像;步骤S4:对边缘图像进行膨胀操作,得到膨胀后的边缘图像;步骤S5:采用膨胀后的边缘图像作为权重图,将第一去噪结果与第二去噪结果相结合,获得最终的去噪结果。该方法有利于提高图像去噪方法的性能,可应用于图像和视频处理、计算机视觉等领域。

    一种基于机器学习的区域感知图像去噪方法

    公开(公告)号:CN108416756A

    公开(公告)日:2018-08-17

    申请号:CN201810255379.9

    申请日:2018-03-26

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于机器学习的区域感知图像去噪方法,包括以下步骤:1、对噪声图像采用加噪标准差σ和k种缩小率缩小后的标准差rj×σ分别作为去噪参数,获得不同去噪结果集;2、将采用σ分别与采用rj×σ的去噪结果相结合,获得最优缩小率和图像块对于采用σ和这两种去噪参数的偏好;3、对噪声图像和采用两种去噪参数的去噪结果进行特征提取;4、将获得的偏好特征集作为机器学习算法的特征集,学习获得图像块的去噪参数偏好模型;5、采用去噪参数偏好模型对测试集中噪声图像进行预测,获得每个图像块预测的偏好概率值;6、通过阈值处理并结合两种去噪参数的去噪结果,获得最终的去噪结果。该方法能够有效提高图像去噪方法的性能。

    基于U-Net融合保留细节的图像去噪方法

    公开(公告)号:CN111145123B

    公开(公告)日:2022-06-14

    申请号:CN201911387476.4

    申请日:2019-12-27

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于U‑Net融合保留细节的图像去噪方法,该方法包括以下步骤:步骤A:设置两种不同的去噪参数进行去噪,获得对应两种不同去噪参数的初始去噪结果图像;步骤B:分别将初始去噪结果图像,以及无噪声图像分成图像块,获得图像块对训练集;步骤C:使用步骤B获得的图像块对训练集,训练基于U‑Net的图像融合深度网络,获得对应特定噪声幅度的基于U‑Net图像融合模型;步骤D:对于噪声图像,首先获得对应步骤A的不同去噪参数的去噪结果,然后输入到步骤C训练好的基于U‑Net图像融合模型中进行融合,获得最终的去噪结果。这种方法可以有效优化图像去噪方法的去噪效果,在去除噪声的同时保留更多的图像细节。

    一种时空一致的立体视频颜色校正方法

    公开(公告)号:CN109672874B

    公开(公告)日:2020-08-11

    申请号:CN201910157230.1

    申请日:2019-03-01

    Applicant: 福州大学

    Abstract: 本发明涉及一种时空一致的立体视频颜色校正方法,首先从参考视频帧和目标视频帧中每隔a帧选出一对关键帧,在每个时间滑动窗口内选取k对;接着对于每一对关键帧,采用图像颜色校正算法获得目标视频关键帧的初始颜色校正结果帧,然后利用引导滤波计算得到和输入的目标视频关键帧结构更加一致的颜色校正结果视频帧;然后在时间滑动窗口内,利用改进的直方图匹配求出目标视频关键帧和颜色校正后的目标视频关键帧之间的颜色映射函数;最后用该颜色映射函数校正位于时间滑动窗口中心的a帧目标视频帧,得到a帧颜色校正后的最终目标视频帧。本发明对于立体视频颜色差异能够起到很好的校正效果。

    一种结合边缘信息的图像去噪方法

    公开(公告)号:CN108550119B

    公开(公告)日:2021-11-02

    申请号:CN201810262921.3

    申请日:2018-03-27

    Applicant: 福州大学

    Abstract: 本发明涉及一种结合边缘信息的图像去噪方法,包括以下步骤:步骤S1:对噪声图像采用加噪标准差σ作为去噪参数进行去噪,获得第一去噪结果;步骤S2:对不同噪声幅度下的噪声图像采用不同缩小率缩小后的标准差r×σ作为去噪参数进行去噪,获得第二去噪结果;步骤S3:对第一去噪结果计算图像边缘信息,得到边缘图像;步骤S4:对边缘图像进行膨胀操作,得到膨胀后的边缘图像;步骤S5:采用膨胀后的边缘图像作为权重图,将第一去噪结果与第二去噪结果相结合,获得最终的去噪结果。该方法有利于提高图像去噪方法的性能,可应用于图像和视频处理、计算机视觉等领域。

    基于U-Net融合保留细节的图像去噪方法

    公开(公告)号:CN111145123A

    公开(公告)日:2020-05-12

    申请号:CN201911387476.4

    申请日:2019-12-27

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于U-Net融合保留细节的图像去噪方法,该方法包括以下步骤:步骤A:设置两种不同的去噪参数进行去噪,获得对应两种不同去噪参数的初始去噪结果图像;步骤B:分别将初始去噪结果图像,以及无噪声图像分成图像块,获得图像块对训练集;步骤C:使用步骤B获得的图像块对训练集,训练基于U-Net的图像融合深度网络,获得对应特定噪声幅度的基于U-Net图像融合模型;步骤D:对于噪声图像,首先获得对应步骤A的不同去噪参数的去噪结果,然后输入到步骤C训练好的基于U-Net图像融合模型中进行融合,获得最终的去噪结果。这种方法可以有效优化图像去噪方法的去噪效果,在去除噪声的同时保留更多的图像细节。

Patent Agency Ranking