-
公开(公告)号:CN115976155B
公开(公告)日:2024-06-25
申请号:CN202211670010.7
申请日:2022-12-25
Applicant: 福州大学
IPC: C12Q1/37
Abstract: 本发明公开了一种SARS‑CoV‑2蛋白酶的可视化检测试剂及可视化检测方法及其应用。所述检测试剂包括链霉亲和素、两端修饰生物素的检测肽、缓冲溶液以及金颗粒。蛋白酶在SARS‑CoV‑2复制过程中发挥着关键作用,且这些蛋白酶与任何人类蛋白酶都没有密切的关系,因此使它们成为病毒检测和药物开发的选择性生物标记物,从而也有效的降低了检测SARS‑CoV‑2的假阳性。本发明利用金颗粒的独特的光物理特性可以快速用肉眼观察检测SARS‑CoV‑2蛋白酶。该方法快捷、检出限低、成本更廉。因此,本发明有望为检测SARS‑CoV‑2提供一种新方法。
-
公开(公告)号:CN116059233A
公开(公告)日:2023-05-05
申请号:CN202310055974.9
申请日:2023-01-18
Applicant: 福州大学
IPC: A61K31/7088 , A61K31/713 , A61K9/14 , A61K39/39 , A61K39/00 , A61P35/00 , A61P37/04
Abstract: 本发明公开了一种纳米颗粒疫苗的低温制备方法,本发明以氟取代功能核酸与抗原肽为原料,低温条件下两种原料在水溶液中通过分子静电引力、色散力作用,自组装形成纳米疫苗复合物。本发明制备纳米疫苗的方法制备简单、绿色、反应条件温和且成本低,实现了无载体的共递送免疫佐剂和抗原肽,避免了载体带来的免疫原性,并实现了抗原高装载率组装。本发明克服了传统核酸纳米结构制备的限制,避免了高温导致的抗原的丢失,展现了一种简单的、通用的实现任意核酸和任意抗原肽的直接自组装,从而对开发制备具有不同功能的纳米疫苗具有重要的科学意义。因此,本发明有望为制备有效的肿瘤纳米疫苗提供理论和实验的技术支持。
-
公开(公告)号:CN116059184A
公开(公告)日:2023-05-05
申请号:CN202310057709.4
申请日:2023-01-18
Applicant: 福州大学
IPC: A61K9/51 , A61K31/711 , A61K31/704 , A61K47/10 , A61K38/16 , A61K9/14 , A61K31/713 , A61K48/00 , A61P35/00
Abstract: 本发明公开了一种冷冻制备生物分子纳米颗粒的方法,首次提出了以冷冻的方法来驱动生物分子自组装形成纳米颗粒。以生物分子为原料,无论是否加入添加剂,溶液在通过降温冷冻之后,水分子结晶,从而将生物分子和添加剂排斥出生长中的冰晶,导致它们的在非冰区域的局部浓度升高,因而增强了生物分子的附着动力学,这种浓度效应加强了生物分子之间或者生物分子与添加剂之间的分子内和分子间静电引力、π‑π堆叠以及亲疏水作用,导致生物分子自组装,形成纳米颗粒。本发明制备方法简单,所需的冰箱普通家庭就拥有,并适用于高温下不稳定的抗原肽组装以及需要和生物分子组装起来联和使用的高温不稳定药物,特别适用于是纳米疫苗的制备。
-
公开(公告)号:CN109980918A
公开(公告)日:2019-07-05
申请号:CN201910312318.6
申请日:2019-04-18
Applicant: 福州大学
Abstract: 本发明提出一种反向耦合高增益升压Cuk电路及其模糊控制方法,其特征在于,包括:由电感L1、构成反向耦合的电感L2和电感L3、输出电容Co、中间电容CB、二极管DB、功率开关管Q1、输入直流电压源Vin以及负载RL组成的主电路,以及由依次连接的采样电路、求和比较电路、模糊控制器和驱动电路组成的控制电路。其采用的模糊控制方法为采样输出电感电压开关周期平均值与输出电压的多变量采样模糊控制。本发明通过引入反向耦合电感以提高升压Cuk变换器输入输出电压增益而实现高效、低输入输出纹波、大变比电能变换的功能。采用多变量采样闭环控制实现恒压功能,闭环控制采用改进TSK滑模模糊控制算法以提高电路的动态响应性能。
-
公开(公告)号:CN119592618A
公开(公告)日:2025-03-11
申请号:CN202510065539.3
申请日:2025-01-16
Applicant: 福州大学
Abstract: 本发明公开了一种基于纳米颗粒的植物活体核酸高效递送方法及应用,属于生物技术领域和农业领域。将功能核酸与植物生长所需的盐类化合物自组装形成无载体纳米颗粒,然后与植物活体共孵育培养,植物活体细胞主动摄取无载体纳米颗粒,从而实现将功能核酸高效递送入植物活体。本发明所制备的无载体纳米颗粒包含功能核酸和盐类化合物,具有制备工艺简单、成本低廉,良好的生物安全性等优点。此外,递送步骤简便,适用于多种植物物种和不同发育阶段的植物细胞,能够实现无损伤的高效基因递送。该技术不仅有效提高了植物基因递送的效率和便捷性,还为植物遗传改良工具和精准农业等应用提供了可靠的支持,具有显著的应用前景和市场潜力。
-
公开(公告)号:CN116059184B
公开(公告)日:2025-03-11
申请号:CN202310057709.4
申请日:2023-01-18
Applicant: 福州大学
IPC: A61K9/51 , A61K31/711 , A61K31/704 , A61K47/10 , A61K38/16 , A61K9/14 , A61K31/713 , A61K48/00 , A61P35/00
Abstract: 本发明公开了一种冷冻制备生物分子纳米颗粒的方法,首次提出了以冷冻的方法来驱动生物分子自组装形成纳米颗粒。以生物分子为原料,无论是否加入添加剂,溶液在通过降温冷冻之后,水分子结晶,从而将生物分子和添加剂排斥出生长中的冰晶,导致它们的在非冰区域的局部浓度升高,因而增强了生物分子的附着动力学,这种浓度效应加强了生物分子之间或者生物分子与添加剂之间的分子内和分子间静电引力、π‑π堆叠以及亲疏水作用,导致生物分子自组装,形成纳米颗粒。本发明制备方法简单,所需的冰箱普通家庭就拥有,并适用于高温下不稳定的抗原肽组装以及需要和生物分子组装起来联和使用的高温不稳定药物,特别适用于是纳米疫苗的制备。
-
公开(公告)号:CN113828771A
公开(公告)日:2021-12-24
申请号:CN202111098131.4
申请日:2021-09-18
Applicant: 福州大学
Abstract: 本发明公开了一种氟取代核酸修饰金颗粒的制备方法。本发明以氟取代核酸FNA和金颗粒为原料,通过分子静电引力、电子云变化、氢键作用,FNA在金颗粒上形成了一层核酸分子。本发明制备的FNA修饰金颗粒,方法简单、绿色、成本低廉,并且本发明的FNA修饰金颗粒上的FNA保留了核酸的功能。核酸可以根据碱基互补配对原则进行互补序列的杂交。同时FNA修饰的金颗粒可以在高盐条件下稳定存在,并且能够抵抗生物体中生物硫醇如谷胱甘肽(GSH)的干扰,从而获得高保真的目标信号避免假阳性信号的出现。因此,本发明有望为制备高保真的金颗粒探针提供理论和实验的技术支持。
-
公开(公告)号:CN116059233B
公开(公告)日:2025-03-11
申请号:CN202310055974.9
申请日:2023-01-18
Applicant: 福州大学
IPC: A61K31/7088 , A61K31/713 , A61K9/14 , A61K39/39 , A61K39/00 , A61P35/00 , A61P37/04
Abstract: 本发明公开了一种纳米颗粒疫苗的低温制备方法,本发明以氟取代功能核酸与抗原肽为原料,低温条件下两种原料在水溶液中通过分子静电引力、色散力作用,自组装形成纳米疫苗复合物。本发明制备纳米疫苗的方法制备简单、绿色、反应条件温和且成本低,实现了无载体的共递送免疫佐剂和抗原肽,避免了载体带来的免疫原性,并实现了抗原高装载率组装。本发明克服了传统核酸纳米结构制备的限制,避免了高温导致的抗原的丢失,展现了一种简单的、通用的实现任意核酸和任意抗原肽的直接自组装,从而对开发制备具有不同功能的纳米疫苗具有重要的科学意义。因此,本发明有望为制备有效的肿瘤纳米疫苗提供理论和实验的技术支持。
-
公开(公告)号:CN113828771B
公开(公告)日:2023-06-27
申请号:CN202111098131.4
申请日:2021-09-18
Applicant: 福州大学
Abstract: 本发明公开了一种氟取代核酸修饰金颗粒的制备方法。本发明以氟取代核酸FNA和金颗粒为原料,通过分子静电引力、电子云变化、氢键作用,FNA在金颗粒上形成了一层核酸分子。本发明制备的FNA修饰金颗粒,方法简单、绿色、成本低廉,并且本发明的FNA修饰金颗粒上的FNA保留了核酸的功能。核酸可以根据碱基互补配对原则进行互补序列的杂交。同时FNA修饰的金颗粒可以在高盐条件下稳定存在,并且能够抵抗生物体中生物硫醇如谷胱甘肽(GSH)的干扰,从而获得高保真的目标信号避免假阳性信号的出现。因此,本发明有望为制备高保真的金颗粒探针提供理论和实验的技术支持。
-
公开(公告)号:CN115976155A
公开(公告)日:2023-04-18
申请号:CN202211670010.7
申请日:2022-12-25
Applicant: 福州大学
IPC: C12Q1/37
Abstract: 本发明公开了一种SARS‑CoV‑2蛋白酶的可视化检测试剂及可视化检测方法及其应用。所述检测试剂包括链霉亲和素、两端修饰生物素的检测肽、缓冲溶液以及金颗粒。蛋白酶在SARS‑CoV‑2复制过程中发挥着关键作用,且这些蛋白酶与任何人类蛋白酶都没有密切的关系,因此使它们成为病毒检测和药物开发的选择性生物标记物,从而也有效的降低了检测SARS‑CoV‑2的假阳性。本发明利用金颗粒的独特的光物理特性可以快速用肉眼观察检测SARS‑CoV‑2蛋白酶。该方法快捷、检出限低、成本更廉。因此,本发明有望为检测SARS‑CoV‑2提供一种新方法。
-
-
-
-
-
-
-
-
-