-
公开(公告)号:CN117576127A
公开(公告)日:2024-02-20
申请号:CN202410067270.8
申请日:2024-01-17
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/11 , G06T7/136 , G06T7/194 , G06V10/28 , G06V10/774 , G06V10/82 , G06V10/25 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于病理图像的肝癌区域自动勾画方法,具体涉及肝癌病理图像预测技术领域。本申请基于肝癌病理图像建立了预测肝癌癌区的模型流程,并且模型效果较好,其中dice值达到0.92,具体的是构建了深度学习病理图片识别模型,具体的是通过深度学习勾画癌区、再利用影像组学提取特征并根据特征训练模型以及判别任务,具备步骤详细、方案清晰和预测准确的优点;解决了医生看病理图片费时标注癌区费力的问题,并且也避免出现假阳性患者浪费医疗资源,分析准确率高;通过预测时截取patches中心部分预测并应用于patches其他区域,有效节约了模型训练与预测的时间,同时模型训练与预测精度损失也较小。
-
公开(公告)号:CN117290686A
公开(公告)日:2023-12-26
申请号:CN202311560971.7
申请日:2023-11-22
Applicant: 神州医疗科技股份有限公司
IPC: G06F18/20 , G16H50/20 , G06F18/10 , G06F18/2113 , G06F18/2411 , G06F18/2413 , G06F18/243 , A61B5/11 , A61B5/00
Abstract: 本发明涉及一种预测患者跌倒风险的模型的构建方法,该构建方法包括:数据的采集、数据的预处理以及模型构建等步骤。本发明针对平衡能力数据以及步态能力数据,通过筛选出与平衡能力数据相关性较高的第一风险特征以及与步态能力数据相关性较高的第二风险特征,采用8种二分类的机器学习模型针对平衡能力和步态能力分别进行模型构建,并分别计算7种模型评价指标,分别选取AUROC最高的预测患者跌倒风险的模型作为最终模型,该模型能够实现对患者步态和平衡能力的快速预测,模型效果较好,且得到的评估结果更加能体现真实的平衡能力与步态能力,提高了患者跌倒风险预测结果的准确度。
-
公开(公告)号:CN114927234B
公开(公告)日:2024-11-22
申请号:CN202210555930.8
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/70 , G16H10/60 , G06F18/23213 , G06F18/22 , G06N3/0464 , G06F16/9535 , G06V10/82 , G06V10/762 , G06V10/74
Abstract: 本申请提供了一种相似病历推荐方法、装置、电子设备及存储介质,方法包括:获取第一电子病历以及第二电子病历;将第一电子病历中第一文本数据以及每一第二电子病历中第二文本数据映射到向量空间,得到第一电子病历对应的第一主诉向量以及每一第二电子病历各自对应的第二主诉向量;基于K均值聚类K‑means算法,对第一主诉向量和每一第二主诉向量按照第一预设个数的类别进行聚类,得到第一电子病历对应的第一主诉向量的类别和每一第二电子病历各自对应的第二主诉向量的类别。本申请能够为用户推荐与指定病历的相似度较高的病历,从而为用户提供参考。
-
公开(公告)号:CN117612711B
公开(公告)日:2024-05-03
申请号:CN202410087069.6
申请日:2024-01-22
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F18/213 , G06F18/25 , G06F18/24
Abstract: 本发明公开了一种分析肝癌复发数据的多模态预测模型构建方法及系统,通过将临床文本、影像、病理多个模态数据进行整合,基于多种模态数据和多种融合策略构建了分析肝癌复发数据的多模态预测模型,相比单模态建模,多模态建模能提高模型预测的准确性,弥补单一数据的局限性,本方案对各个模态的特征进行单独调优,全面反映肝癌复发数据的复杂机制,对于肝癌复发数据的分析更为完备,还能增强模型的泛化能力,更好地适用于医学应用场景,辅助临床决策。
-
公开(公告)号:CN117649418A
公开(公告)日:2024-03-05
申请号:CN202410128271.9
申请日:2024-01-30
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06T7/10 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及医学图像处理技术领域,具体涉及一种胸部多器官分割方法及系统和计算机可读存储介质;本发明采用STUNet模型作为分割模型的基础模型,采用对部分器官标记的胸部CT图像进行训练,对缺标数据赋予伪标签,最终实现将无标或缺标的胸部CT图像形成全标记CT图像,进而训练得到胸部多器官分割模型,实现对无标或缺标的胸部CT图像的分割,解决了胸部CT图像全数据少的问题,使缺标或无标的胸部CT图像得到充分利用,实现准确的胸部多器官分割模型的构建。
-
公开(公告)号:CN117174261A
公开(公告)日:2023-12-05
申请号:CN202311451817.6
申请日:2023-11-03
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明公开了一种用于医学影像的多类型标注流程集成系统,所述系统由预训练模型标注子系统、2D标注子系统和3D标注子系统共同集成,本系统针对不同的医学影像提供了不同类型的标注流程,能够适用于各类医学系统,满足不同医疗系统的需求,有助于医疗工作者做出更加准确的诊断,提高了医疗服务质量,通过使用本系统,医疗工作者能够有效地处理医学影像的信息,实现对影像的准确定位和有力的分析,提高了医生和医疗工作者的诊断精度和准确度。
-
公开(公告)号:CN114927234A
公开(公告)日:2022-08-19
申请号:CN202210555930.8
申请日:2022-05-20
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/70 , G16H10/60 , G06N3/04 , G06K9/62 , G06F16/9535
Abstract: 本申请提供了一种相似病历推荐方法、装置、电子设备及存储介质,方法包括:获取第一电子病历以及第二电子病历;将第一电子病历中第一文本数据以及每一第二电子病历中第二文本数据映射到向量空间,得到第一电子病历对应的第一主诉向量以及每一第二电子病历各自对应的第二主诉向量;基于K均值聚类K‑means算法,对第一主诉向量和每一第二主诉向量按照第一预设个数的类别进行聚类,得到第一电子病历对应的第一主诉向量的类别和每一第二电子病历各自对应的第二主诉向量的类别。本申请能够为用户推荐与指定病历的相似度较高的病历,从而为用户提供参考。
-
公开(公告)号:CN117576127B
公开(公告)日:2024-04-19
申请号:CN202410067270.8
申请日:2024-01-17
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/11 , G06T7/136 , G06T7/194 , G06V10/28 , G06V10/774 , G06V10/82 , G06V10/25 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于病理图像的肝癌区域自动勾画方法,具体涉及肝癌病理图像预测技术领域。本申请基于肝癌病理图像建立了预测肝癌癌区的模型流程,并且模型效果较好,其中dice值达到0.92,具体的是构建了深度学习病理图片识别模型,具体的是通过深度学习勾画癌区、再利用影像组学提取特征并根据特征训练模型以及判别任务,具备步骤详细、方案清晰和预测准确的优点;解决了医生看病理图片费时标注癌区费力的问题,并且也避免出现假阳性患者浪费医疗资源,分析准确率高;通过预测时截取patches中心部分预测并应用于patches其他区域,有效节约了模型训练与预测的时间,同时模型训练与预测精度损失也较小。
-
公开(公告)号:CN117174319B
公开(公告)日:2024-03-01
申请号:CN202311452738.7
申请日:2023-11-03
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/30 , G06N5/022 , G06N3/0464
Abstract: 本发明涉及一种基于知识图谱的脓毒症时序预测方法及系统;该方法包括:获取脓毒症患者的时序诊次信息,形成诊次数据集;基于CCS或ICD编码技术,构建医学本体图谱;基于医学本体图谱,构建目标脓毒症患者的诊次图谱;基于诊次图谱,生成诊次邻接矩阵和诊次特征矩阵;将诊次邻接矩阵和诊次特征矩阵分别输入至ST‑GCN网络模型中,得到目标脓毒症患者诊次T的诊断预测结果。本发明通过将脓毒症患者患者的时序诊次信息和医学知识图谱相结合,实现全流程端到端预测,不仅有利于模型提取出患者更准确的表征,提升模型预测的准确性,还能够对大量减少医生的工作量,节省医疗资源。
-
公开(公告)号:CN117423479A
公开(公告)日:2024-01-19
申请号:CN202311746772.5
申请日:2023-12-19
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明公开了一种基于病理图像数据的预测方法及系统,涉及图像处理技术领域。取癌细胞切除术后患者的病理切片数据集;获得部分或全部病理切片数据集的每张病理切片样本的ROI癌区;对所有ROI癌区中的细胞核进行分割处理;根据分割处理后的病理切片样本分别提取病理学特征数据;采集多组患者预测训练数据;每组患者预测训练数据均包括分割处理前的病理切片样本,该病理切片样本的一组病理学特征数据,以及患者术后预测结果;通过多组患者预测训练数据训练得到临床患者预测训练模型;将待预测患者病理切片输入临床患者预测训练模型,得到患者术后预测结果,能够更加准确、快速地预测患者的临床结局。
-
-
-
-
-
-
-
-
-