-
公开(公告)号:CN115564888A
公开(公告)日:2023-01-03
申请号:CN202210845580.9
申请日:2022-07-18
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明基于MVSNet网络进行改进,提出一种基于深度学习的可见光多视图像三维重建方法。将网络中的批归一化层和非线性激活函数层替换为融合的Inplace‑ABN层,降低了显存的占用量。设计基于分组相似性的加权均值度量法对代价体的特征维度进行降维,获得了更加轻量级的代价体,压缩了网络参数,降低了计算量与显存消耗。针对MVSNet网络使用低尺度特征图导致深度图分辨率低于输入图像的问题,利用特征金字塔模块提取多尺度的特征图,并设计了分阶段、多尺度的迭代优化深度估计。在保证精度的前提下,通过多轮深度迭代,降低了代价体深度平面的平均数量,使代价体获得更高的空间分辨率,提高了深度图估计的准确度。最后对输出深度图进行过滤与融合完成场景三维重建任务。
-
公开(公告)号:CN115115860B
公开(公告)日:2024-12-17
申请号:CN202210856359.3
申请日:2022-07-20
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明基于改进的SuperPoint网络和改进的SuperGlue网络设计了一种融合网络,该网络利用全卷积网络提取图像特征点,使用一种亚像素化模块利用邻域窗口信息增进特征点的坐标精度,对图像特征点与特征向量联合编码后利用注意力机制模拟人类进行特征点匹配的过程并采用Sinkhorn算法解算匹配关系。本发明设计了自适应的空间约束层,利用空间约束关系对粗匹配点对进行多种方法的并行筛选和计算,能够自适应判别图像间的空间关系,对输入图像提取出匹配好的特征点对。
-
公开(公告)号:CN115115860A
公开(公告)日:2022-09-27
申请号:CN202210856359.3
申请日:2022-07-20
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明基于改进的SuperPoint网络和改进的SuperGlue网络设计了一种融合网络,该网络利用全卷积网络提取图像特征点,使用一种亚像素化模块利用邻域窗口信息增进特征点的坐标精度,对图像特征点与特征向量联合编码后利用注意力机制模拟人类进行特征点匹配的过程并采用Sinkhorn算法解算匹配关系。本发明设计了自适应的空间约束层,利用空间约束关系对粗匹配点对进行多种方法的并行筛选和计算,能够自适应判别图像间的空间关系,对输入图像提取出匹配好的特征点对。
-
-