-
公开(公告)号:CN106097356A
公开(公告)日:2016-11-09
申请号:CN201610427938.0
申请日:2016-06-15
Applicant: 电子科技大学
IPC: G06T7/00
CPC classification number: G06T7/0002 , G06T2207/20084 , G06T2207/20164
Abstract: 本发明公开了一种基于Spiking图像角点检测方法,属于图像处理技术领域,解决现有技术对角点检测精度不高,缺乏对时间和空间特征的解释问题。本发明提出了一种基于Spiking神经网络的图像角点检测方法,该算法使用Spiking神经元模板对图像进行扫描,并根据检测神经元的电压变化等情况来确定图像角点,可以较好的对图像角点进行检测。Spiking神经网络使用电压表示信息强度,使用脉冲传递信息,由于这种基于脉冲的信息表示方法具有很强的时序性,因此本发明借助于Spiking神经网络的优势,研究基于Spiking神经网络的图像角点特征检测。本发明应用于图像角点特征提取、光流计算、目标识别、跟踪、运动估计和三维重构等涉及角点应用的计算机视觉场合。涉及Spiking神经网络、机器学习。
-
公开(公告)号:CN106097356B
公开(公告)日:2018-07-06
申请号:CN201610427938.0
申请日:2016-06-15
Applicant: 电子科技大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于Spiking图像角点检测方法,属于图像处理技术领域,解决现有技术对角点检测精度不高,缺乏对时间和空间特征的解释问题。本发明提出了一种基于Spiking神经网络的图像角点检测方法,该算法使用Spiking神经元模板对图像进行扫描,并根据检测神经元的电压变化等情况来确定图像角点,可以较好的对图像角点进行检测。Spiking神经网络使用电压表示信息强度,使用脉冲传递信息,由于这种基于脉冲的信息表示方法具有很强的时序性,因此本发明借助于Spiking神经网络的优势,研究基于Spiking神经网络的图像角点特征检测。本发明应用于图像角点特征提取、光流计算、目标识别、跟踪、运动估计和三维重构等涉及角点应用的计算机视觉场合。涉及Spiking神经网络、机器学习。
-