-
公开(公告)号:CN113052875A
公开(公告)日:2021-06-29
申请号:CN202110338092.4
申请日:2021-03-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种改进的基于状态感知模板更新的目标跟踪技术。在目标跟踪时,随着图像采集设备和目标之间角度的变化,或者目标本身特性造成的形态变化,会造成图像序列中目标形状、大小上的变化,即目标形变问题,给目标跟踪算法带来了一定的挑战。本发明根据目标形变问题,基于SiamRPN算法提出了一种基于状态感知模板更新的Siamese目标跟踪技术,从两个角度来着手改进目标跟踪里的模板更新。一是如何进行模板更新,结合元学习的思想,构建模板更新网络,实现快速可靠的模板更新。二是何时进行模板更新,通过构建一个长短记忆网络来对目标状态进行判断,决定更新目标模板的时机。本发明能有效的解决长时目标跟踪场景下的目标模板更新的问题。
-
公开(公告)号:CN113052189A
公开(公告)日:2021-06-29
申请号:CN202110338087.3
申请日:2021-03-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种改进的MobileNetV3的特征提取网络。该模型在基于CNN的计算机视觉技术领域具有一定通用性。以Resnet、Vgg为核心的模型在图像经过特征提取网络处理时忽略了其特征集合存在大量冗余性和相似性,且存在参数量高、计算量大的问题。针对冗余性和相似性的问题,提出shadow‑bottleneck,即通过利用分组卷积和改进的通道混洗生成少量本体特征的基础上再采用高效运算生成影子特征的结构方式来保证特征的丰富性和冗余性;针对轻量化问题,参考MobileNetV3模型结构并将网络中的bottleneck替换为shadow‑bottleneck形成最终改进的轻量化特征提取网络模型。该模型能够具有较低的计算量和参数量,且能够获得较高的分类精度。
-
公开(公告)号:CN113052189B
公开(公告)日:2022-04-29
申请号:CN202110338087.3
申请日:2021-03-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种改进的MobileNetV3的特征提取网络。该模型在基于CNN的计算机视觉技术领域具有一定通用性。以Resnet、Vgg为核心的模型在图像经过特征提取网络处理时忽略了其特征集合存在大量冗余性和相似性,且存在参数量高、计算量大的问题。针对冗余性和相似性的问题,提出shadow‑bottleneck,即通过利用分组卷积和改进的通道混洗生成少量本体特征的基础上再采用高效运算生成影子特征的结构方式来保证特征的丰富性和冗余性;针对轻量化问题,参考MobileNetV3模型结构并将网络中的bottleneck替换为shadow‑bottleneck形成最终改进的轻量化特征提取网络模型。该模型能够具有较低的计算量和参数量,且能够获得较高的分类精度。
-
公开(公告)号:CN114818963A
公开(公告)日:2022-07-29
申请号:CN202210506243.7
申请日:2022-05-10
Applicant: 电子科技大学
IPC: G06K9/62 , G06V10/74 , G06V10/764 , G06V10/771 , G06V10/80 , G06V10/82 , G06N3/04
Abstract: 本发明公开了一种基于跨图像特征融合的小样本检测算法。本发明主体结构是基于两阶段的目标检测算法Faster‑RCNN构建的小样本学习算法。首先输入查询图像和支持集图像进行特征图的提取,得到的特征图被送入跨图像特征融合模块用支持集中的特征信息来加强查询集中目标特征信息的表达,之后送入改进后的RPN模块生成ROI特征向量,再通过改进后的特征聚合模块对候选框进行筛选并完成支持集向量和ROI特征向量的空间对齐,最后将处理好的ROI和支持集向量送入分类器中进行分类,最终输出目标类型和框的准确定位。最后在PASCALVOC数据集上设计了多组消融实验和对比实验都获得了良好的检测精度,验证了检测算法的有效性。
-
公开(公告)号:CN114548547A
公开(公告)日:2022-05-27
申请号:CN202210152190.3
申请日:2022-02-18
Applicant: 电子科技大学
IPC: G06Q10/04 , G06N3/04 , G06K9/62 , G06F16/215
Abstract: 本发明公开了一种基于VMD‑LSTM的时间序列滑坡位移数据预测方法。该发明在时间序列数据上具有一定的通用性,该专利以滑坡数据为说明案例。针对滑坡位移数据的预测,其传统的LSTM预测模型准确度比较低的情况,使用VMD‑LSTM模型对某地区的滑坡位移数据进行了预测,其所开发的模型相比于传统的LSTM模型具有更高的精度和稳定性,并且VMD降低了序列复杂度,增强了降噪能力。
-
公开(公告)号:CN111582111B
公开(公告)日:2022-04-29
申请号:CN202010353013.2
申请日:2020-04-29
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于语义分割的细胞各成分分割方法,属于图像处理技术领域。本发明基于所创建的基于编码解码的语义分割网络,结合去池化和跳层连接的方式,充分利用细胞图像的多尺度特征和像素的位置信息,对细胞各成分进行粗提取;然后通过灰度共生矩阵得到纹理特征,结合灰度共生矩阵所得的图像纹理信息改进超像素分割算法,分割出细胞各成分的精细边缘;最后将细胞各成分的粗提取结果和精细边缘进行融合,得到最终的细胞各成分分割结果。本发明可以用于细胞结构分析等技术领域,能够实现细胞各成分的自动准确分割。
-
公开(公告)号:CN113096136A
公开(公告)日:2021-07-09
申请号:CN202110337987.6
申请日:2021-03-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于深度学习的全景分割技术。该发明在全景分割方向上具有一定的通用性与泛化能力。在全景分割中子网络之间即存在着较大的差异性,又存在着紧密的联系。一方面语义分割应用于图像背景类别的像素分割,其更关注场景的语义信息;而实例分割注重图像中个体实例的分割,在特征上关注于图像的结构信息。因此本发明根据子网络特点设计相应的注意力模块,使子网络能更好的关注于各自的分割对象。另一方面,图像中背景于前景往往具有丰富的语义关系,合理应用背景与前景的上下文语义能够更好的促进子网络的分割。因此本发明设计语义辅助实例分割模块,使子网络间的特征信息能够更好的交流,达到相互促进的效果。本发明的方法具有良好的通用性,能够很好的运用在各种全景分割网络中。
-
公开(公告)号:CN111582111A
公开(公告)日:2020-08-25
申请号:CN202010353013.2
申请日:2020-04-29
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于语义分割的细胞各成分分割方法,属于图像处理技术领域。本发明基于所创建的基于编码解码的语义分割网络,结合去池化和跳层连接的方式,充分利用细胞图像的多尺度特征和像素的位置信息,对细胞各成分进行粗提取;然后通过灰度共生矩阵得到纹理特征,结合灰度共生矩阵所得的图像纹理信息改进超像素分割算法,分割出细胞各成分的精细边缘;最后将细胞各成分的粗提取结果和精细边缘进行融合,得到最终的细胞各成分分割结果。本发明可以用于细胞结构分析等技术领域,能够实现细胞各成分的自动准确分割。
-
公开(公告)号:CN114818963B
公开(公告)日:2023-05-09
申请号:CN202210506243.7
申请日:2022-05-10
Applicant: 电子科技大学
IPC: G06V10/80 , G06V10/74 , G06V10/764 , G06V10/766 , G06V10/771 , G06V10/82 , G06N3/045
Abstract: 本发明公开了一种基于跨图像特征融合的小样本检测方法。本发明主体结构是基于两阶段的目标检测算法Faster‑RCNN构建的小样本学习算法。首先输入查询图像和支持集图像进行特征图的提取,得到的特征图被送入跨图像特征融合模块用支持集中的特征信息来加强查询集中目标特征信息的表达,之后送入改进后的RPN模块生成ROI特征向量,再通过改进后的特征聚合模块对候选框进行筛选并完成支持集向量和ROI特征向量的空间对齐,最后将处理好的ROI和支持集向量送入分类器中进行分类,最终输出目标类型和框的准确定位。最后在PASCAL VOC数据集上设计了多组消融实验和对比实验都获得了良好的检测精度,验证了检测算法的有效性。
-
-
-
-
-
-
-
-