-
公开(公告)号:CN119918413A
公开(公告)日:2025-05-02
申请号:CN202510085371.2
申请日:2025-01-20
Applicant: 电子科技大学
Abstract: 本发明属于等离子体诊断领域,具体提供一种基于微波反射法的深度神经网络瞬态等离子体特征参数反演方法,用以解决现有技术反演速度慢的问题。本发明将深度学习神经网络运用于激波管时变等离子体特征参数反演问题中;首先,使用MATLAB构建了设定范围内介电常数的数据集,并由激波管传输线模型得到下一时刻的反射幅度和反射相位;然后,构建预测介电常数的深度神经网络模型,使用数据集对模型进行训练和调参;最后,利用神经网络模型预测激波管时变等离子体的介电常数,再计算得到电子密度和碰撞频率的变化曲线;综上所述,本发明在解决反演多值问题的前提下,实现了激波管时变等离子体特征参数的快速高精度反演,大幅提升了反演效率。
-
公开(公告)号:CN119315282A
公开(公告)日:2025-01-14
申请号:CN202411520273.9
申请日:2024-10-29
Applicant: 电子科技大学
Abstract: 本发明属于极化转换超表面技术领域,具体提供一种具有四阶响应的高频率选择性反射型极化转换超表面,用以实现高极化转换率的极化转换器。本发明由频率选择表面(Frequency Selective Surface,FSS)与耦合层组成,通过底层金属层的L形微带线及通孔组成了耦合的半波长微带谐振器,将响应扩展到高阶,提升了极化转化率和展宽带宽;同时,中间金属层引入极化转化零点,提高传输频带两侧的频率选择特性;并且,该极化超表面的结构旋转对称,具有双极化转换特性,在电磁波极化转换方面具有较高应用价值。
-