-
公开(公告)号:CN106423177B
公开(公告)日:2018-10-16
申请号:CN201610825648.1
申请日:2016-09-14
Applicant: 燕山大学
Abstract: 一种表面石墨化的微米金刚石负载钙钛矿复合材料,它是一种粒径为10~20nm的钙钛矿颗粒均匀地分布在粒径为1~20μm的表面石墨化的微米金刚石上复合材料,其制备方法主要是对微米金刚石进行净化处理,再将微米金刚石进行表面石墨化,然后将其制备成悬浮液;将硝酸盐、柠檬酸和烷基酚聚氧乙烯醚加入到上述悬浮液中,使金属硝酸盐水解形成溶胶,再聚合生成凝胶,最后经干燥、焙烧得到表面石墨化的微米金刚石负载钙钛矿复合材料。本发明工艺简单、成本低,化学均匀性好,增加催化活性位点,使催化剂具有更好的催化能力;由于表层石墨的导电性,能够起到电子传递通道的作用,使得复合材料具有良好的电导率。
-
公开(公告)号:CN107248581A
公开(公告)日:2017-10-13
申请号:CN201710519687.3
申请日:2017-06-30
Applicant: 燕山大学
Abstract: 一种氮掺杂三维石墨烯负载纳米银的复合材料,其是一种氮的掺杂量为2.3~8.8%的石墨烯片层在温度和压力的作用下发生自组装、形成多孔的三维网状结构、其颗粒尺寸为80~120nm的银颗粒均匀地分散在三维石墨烯表面且负载量为12~51%的复合材料。该复合材料的制备方法主要是以石墨纸为阳极,碳棒为阴极,浓硫酸为电解液,进行氧化剥离,制备出薄层氧化石墨烯材料;将乙二胺和硝酸银依次加入到氧化石墨烯悬浮液中,通过一步水热反应,经干燥后得到。本发明操作简单、成本低,在电催化过程中,该复合材料拥有的多孔结构,极大地增加了三相反应界面,从而提高了氧气的传质速度;同时该复合材料具有较高的电导率。
-
公开(公告)号:CN106299393A
公开(公告)日:2017-01-04
申请号:CN201610825641.X
申请日:2016-09-14
Applicant: 燕山大学
CPC classification number: H01M4/9016 , B82Y30/00 , H01M4/8825 , H01M4/9083
Abstract: 一种钙钛矿/金刚石复合材料,它是一种粒径为50~80nm的钙钛矿纳米粒子均匀地分布在粒径为1~20μm的金刚石微粉上的复合材料;其制备方法主要是将微米金刚石进行氨化处理,使其表面带有氨基团,再将其制备成金刚石悬浮液;将硝酸盐和柠檬酸加入到金刚石悬浮液中,使金属硝酸盐水解形成溶胶,再聚合生成凝胶,最后经干燥、焙烧得到钙钛矿/金刚石复合材料。本发明工艺简单、成本低,化学均匀性好,且钙钛矿纳米粒子均匀的分布在了金刚石微粉上,提高了钙钛矿纳米粒子的分散度,增大了催化剂的比表面积,增多了催化活性位点,使其具有更好的催化能力,并拓宽了微米金刚石的应用领域。
-
公开(公告)号:CN104437472B
公开(公告)日:2016-08-24
申请号:CN201410623631.9
申请日:2014-11-06
Applicant: 燕山大学
Abstract: 一种钙钛矿纳米棒/石墨烯复合材料,其是在石墨烯膜上均匀分布棒长为140~770nm,直径为70~90nm的钙钛矿纳米棒。该复合材料的制备方法主要是以石墨纸为阳极,碳棒为阴极,浓硫酸为电解液,进行氧化剥离,制备出薄层石墨烯材料;再将其制备成石墨烯悬浮液;将硝酸盐加入到石墨烯悬浮液中,使金属硝酸盐水解,辅助水热,最后经干燥、焙烧得到钙钛矿纳米棒/石墨烯复合材料。本发明操作简单、晶化程度高,在电催化过程中,该复合材料具有较高的电导率,提供更多的活性位点,适合作为燃料电池的电催化材料使用;在光催化过程中,该复合材料可有效地阻止光生电子和空穴的复合,比单纯的钙钛矿纳米棒材料具有更高的光催化活性。
-
公开(公告)号:CN103050572B
公开(公告)日:2016-04-06
申请号:CN201210516978.4
申请日:2012-12-06
Applicant: 燕山大学
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 一种钙钛矿/石墨烯复合薄膜电极的制备方法,主要是将硝酸盐和柠檬酸加入到自制的石墨烯悬浮液中,使金属硝酸盐水解形成溶胶,再聚合生成凝胶,最后经焙烧得到钙钛矿/石墨烯;将钙钛矿/石墨烯复合粉体分散在无水乙醇中获得稳定的悬浮液,通过施加直流电场,使悬浮液中的复合粉体在电场力的作用下向透明导电玻璃移动,并在其上形成均匀的沉积层,从而制备出钙钛矿/石墨烯复合薄膜电极。本发明操作简单、无后续高温烧结,且钙钛矿颗粒均匀的分布在了石墨烯片层上。在光催化过程中,该复合薄膜电极使得光生电子-空穴对迅速转移,有效地阻止光生电子和光生空穴的复合,因此可适合作为光电催化的电极材料使用。
-
公开(公告)号:CN106299393B
公开(公告)日:2018-12-07
申请号:CN201610825641.X
申请日:2016-09-14
Applicant: 燕山大学
Abstract: 一种钙钛矿/金刚石复合材料,它是一种粒径为50~80nm的钙钛矿纳米粒子均匀地分布在粒径为1~20μm的金刚石微粉上的复合材料;其制备方法主要是将微米金刚石进行氨化处理,使其表面带有氨基团,再将其制备成金刚石悬浮液;将硝酸盐和柠檬酸加入到金刚石悬浮液中,使金属硝酸盐水解形成溶胶,再聚合生成凝胶,最后经干燥、焙烧得到钙钛矿/金刚石复合材料。本发明工艺简单、成本低,化学均匀性好,且钙钛矿纳米粒子均匀的分布在了金刚石微粉上,提高了钙钛矿纳米粒子的分散度,增大了催化剂的比表面积,增多了催化活性位点,使其具有更好的催化能力,并拓宽了微米金刚石的应用领域。
-
公开(公告)号:CN108795383A
公开(公告)日:2018-11-13
申请号:CN201810567081.1
申请日:2018-06-05
Applicant: 燕山大学
IPC: C09K3/14
CPC classification number: C09K3/14
Abstract: 一种提高金刚石自锐性的制备方法,其主要是将金刚石颗粒浸泡入壳聚糖溶液中润湿后沥出,再与羰基铁粉混合搅拌、干燥,金刚石与羰基铁粉的质量比是1:1,用30目筛网过筛,得到表面沾附铁粉的金刚石颗粒;将表面沾附铁粉的金刚石颗粒与刚玉粉均匀混合置入坩埚中,在马弗炉内进行900~1200℃高温退火,保温2小时,自然冷却至室温出炉,过筛分离去除刚玉粉与铁粉,再用稀盐酸将退火后的金刚石颗粒浸泡搅拌1小时,除去金刚石颗粒表面粘附的铁粉,洗净干燥即得到表面被铁粉刻蚀的金刚石颗粒。本发明工艺简单、制备时间短,成本经济,得到表面蚀坑均匀、把持力和自锐性良好的金刚石颗粒。
-
公开(公告)号:CN105350294B
公开(公告)日:2018-04-03
申请号:CN201510724764.X
申请日:2015-10-29
Applicant: 燕山大学
IPC: D06M11/77 , D06M101/40
Abstract: 一种镀碳化硅层的短切碳纤维,它是一种碳化硅涂层厚度在100~500纳米之间,涂层中的碳化硅是纳米晶,碳化硅晶粒为10~50纳米的短切碳纤维。上述镀碳化硅层的短切碳纤维的制备方法主要是将去除表面胶层的短切碳纤维与纳米硅粉按质量比为8~20:100混合,装填到石墨模具中,放入电等离子烧结设备,以100℃/min的速度升至1150℃,再以20℃/min升至1250~1300℃,保温5分钟;然后,以20℃/min降温到1200℃,保温10分钟,随炉自然冷却。取出烧结块后,研磨15分钟,即得到表面镀碳化硅层的短切碳纤维。本发明工艺简单、镀层均匀、增重量可控,提高了短切碳纤维作为增强材料的界面相容性,改善了短切碳纤维在烧结过程中的抗氧化性能。
-
公开(公告)号:CN104988476B
公开(公告)日:2018-01-23
申请号:CN201510422922.6
申请日:2015-07-17
Applicant: 燕山大学
Abstract: 一种金刚石微粉表面镀覆纳米银的方法,它主要是以银氨溶液为化学镀液,以葡萄糖和聚乙烯吡咯烷酮的混合溶液为还原剂,在氨化的金刚石微粉表面化学镀银纳米粒子。本发明操作简单、镀覆银盐的利用率高,制备出的镀银金刚石微粉镀层均匀,增重量可控,提高了金刚石微粉的导电性,改善了金刚石微粉在金属结合剂中的烧结条件,增强了金刚石烧结体对金刚石微粉的把持力。
-
公开(公告)号:CN104437472A
公开(公告)日:2015-03-25
申请号:CN201410623631.9
申请日:2014-11-06
Applicant: 燕山大学
Abstract: 一种钙钛矿纳米棒/石墨烯复合材料,其是在石墨烯膜上均匀分布棒长为140~770nm,直径为70~90nm的钙钛矿纳米棒。该复合材料的制备方法主要是以石墨纸为阳极,碳棒为阴极,浓硫酸为电解液,进行氧化剥离,制备出薄层石墨烯材料;再将其制备成石墨烯悬浮液;将硝酸盐加入到石墨烯悬浮液中,使金属硝酸盐水解,辅助水热,最后经干燥、焙烧得到钙钛矿纳米棒/石墨烯复合材料。本发明操作简单、晶化程度高,在电催化过程中,该复合材料具有较高的电导率,提供更多的活性位点,适合作为燃料电池的电催化材料使用;在光催化过程中,该复合材料可有效地阻止光生电子和空穴的复合,比单纯的钙钛矿纳米棒材料具有更高的光催化活性。
-
-
-
-
-
-
-
-
-