-
公开(公告)号:CN111913197A
公开(公告)日:2020-11-10
申请号:CN202010693366.7
申请日:2020-07-17
Applicant: 燕山大学
Abstract: 本发明公开了一种GPS_BDS双模授时技术在配电网自动化的应用方法,属于配电网自动化系统技术领域,包括以下步骤:1)获取实验数据;2)提取某一历元时刻卫星数据;3)根据导航电文和星历观测文件得出卫星的地心地固坐标,并对每颗卫星的伪距观测值进行修正;4)利用卫星位置坐标和修正后的伪距,分别采用最小二乘法和加权最小二乘法进行定位解算,得到接收机的坐标和钟差;5)分析求解结果与真实坐标之间的偏差。本发明提高了授时精度。
-
公开(公告)号:CN110543860B
公开(公告)日:2022-06-07
申请号:CN201910838901.0
申请日:2019-09-05
Applicant: 燕山大学
Abstract: 本发明公开了一种基于TJM迁移学习的机械故障诊断方法及系统。所述方法通过引入CEEMDAN分解,在解决模式混合问题的同时减少了算法计算量,同时利用迁移学习方法解决了传统的机器学习方法在训练和测试数据分布存在一定程度的差异时,所建立的分类模型推广能力差、甚至有时出现不能通用的问题;同时解决了旋转机械因为不同工况间数据差异引起的故障诊断效率低的问题,还解决了因为某些工作状态中的旋转机械数据采集量不够,造成故障状态不完备、无法正确完整进行故障诊断的问题。本发明利用TJM迁移学习方法中联合执行跨领域的特征匹配和实例重加权的特性最大程度地减小了源域和目标域数据差异大所造成的识别诊断率不高的问题,极大地提高了故障诊断精度。
-
公开(公告)号:CN111950696A
公开(公告)日:2020-11-17
申请号:CN202010609214.4
申请日:2020-06-29
Applicant: 燕山大学
Abstract: 本发明公开了一种基于降维和改进神经网络的短期电力负荷预测方法,涉及电力负荷预测技术领域,所述方法包括:首先运用SNE算法将高维负荷相关气象数据通过仿射变换映射到低维,然后通过飞蛾火焰优化算法将ELM的输出权值和阈值作为优化变量,负荷预测结果的均方误差值作为优化结果,找到预测最佳结果对应的训练权值和阈值反馈给ELM,得到改进的神经网络预测模型。将降维的气象数据协同电力负荷数据共同输入改进的神经网络进行数据训练和负荷预测。本发明改进了神经网络的短期电力负荷预测过程,大大提高了电力负荷预测的精度。
-
公开(公告)号:CN109271975B
公开(公告)日:2020-08-21
申请号:CN201811373464.1
申请日:2018-11-19
Applicant: 燕山大学
Abstract: 本发明提供一种基于大数据多特征提取协同分类的电能质量扰动识别方法,所述方法是建立多信息多分类器融合的电能质量分析决策模型,包括:设计LASSO原理的大数据冗余数据剔除方法、变尺度大数据简约方法和基于数据结构同构简约算法同时用主元分析法对非同源气象数据降维,改进广义S变换、广义谐波小波、EEMD/LMD等多种信息处理方法融合提取电能质量信号特征,然后采用压缩感知分类器(SRC)、ε机复杂系统辨识分类器(εCSSR)和神经网络(ANN)对特征向量分类,最后,采用改进的决策模板法(SWDT),使用混淆矩阵衡量各分类器对每类故障的识别能力,根据初步诊断情况自适应地为各分类器赋予决策权值,充分利用训练信息,提高分类决策准确度。
-
公开(公告)号:CN110543860A
公开(公告)日:2019-12-06
申请号:CN201910838901.0
申请日:2019-09-05
Applicant: 燕山大学
Abstract: 本发明公开了一种基于TJM迁移学习的机械故障诊断方法及系统。所述方法通过引入CEEMDAN分解,在解决模式混合问题的同时减少了算法计算量,同时利用迁移学习方法解决了传统的机器学习方法在训练和测试数据分布存在一定程度的差异时,所建立的分类模型推广能力差、甚至有时出现不能通用的问题;同时解决了旋转机械因为不同工况间数据差异引起的故障诊断效率低的问题,还解决了因为某些工作状态中的旋转机械数据采集量不够,造成故障状态不完备、无法正确完整进行故障诊断的问题。本发明利用TJM迁移学习方法中联合执行跨领域的特征匹配和实例重加权的特性最大程度地减小了源域和目标域数据差异大所造成的识别诊断率不高的问题,极大地提高了故障诊断精度。
-
公开(公告)号:CN109271975A
公开(公告)日:2019-01-25
申请号:CN201811373464.1
申请日:2018-11-19
Applicant: 燕山大学
Abstract: 本发明提供一种基于大数据多特征提取协同分类的电能质量扰动识别方法,所述方法是建立多信息多分类器融合的电能质量分析决策模型,包括:设计LASSO原理的大数据冗余数据剔除方法、变尺度大数据简约方法和基于数据结构同构简约算法同时用主元分析法对非同源气象数据降维,改进广义S变换、广义谐波小波、EEMD/LMD等多种信息处理方法融合提取电能质量信号特征,然后采用压缩感知分类器(SRC)、ε机复杂系统辨识分类器(εCSSR)和神经网络(ANN)对特征向量分类,最后,采用改进的决策模板法(SWDT),使用混淆矩阵衡量各分类器对每类故障的识别能力,根据初步诊断情况自适应地为各分类器赋予决策权值,充分利用训练信息,提高分类决策准确度。
-
-
-
-
-