-
公开(公告)号:CN110136113A
公开(公告)日:2019-08-16
申请号:CN201910399732.5
申请日:2019-05-14
Applicant: 湖南大学
Abstract: 本发明属于计算机视觉及机器学习技术领域,公开了一种基于卷积神经网络的阴道病理图像分类方法。本发明包括步骤:使用上采样方法,得到类别平衡的阴道病理图像数据集;利用数据增强方法扩增阴道病理图像数据集;利用扩增的阴道病理图像数据集对图像分类卷积神经网络进行训练;利用交叉熵损失函数,结合BP算法对图像分类卷积神经网络进行网络参数更新;通过训练后的最优图像分类卷积神经网络对输入图像进行分类。本发明避免了传统特征提取方法的局限,如:高度依赖于医护人员的经验知识,耗费大量的时间和精力完成,提取出有区分性的高质量特征也往往存在一定的困难,而且准确率低,本发明借助于卷积神经网络,实现阴道病理图像的高精度分类。
-
公开(公告)号:CN110136113B
公开(公告)日:2022-06-07
申请号:CN201910399732.5
申请日:2019-05-14
Applicant: 湖南大学
Abstract: 本发明属于计算机视觉及机器学习技术领域,公开了一种基于卷积神经网络的阴道病理图像分类方法。本发明包括步骤:使用上采样方法,得到类别平衡的阴道病理图像数据集;利用数据增强方法扩增阴道病理图像数据集;利用扩增的阴道病理图像数据集对图像分类卷积神经网络进行训练;利用交叉熵损失函数,结合BP算法对图像分类卷积神经网络进行网络参数更新;通过训练后的最优图像分类卷积神经网络对输入图像进行分类。本发明避免了传统特征提取方法的局限,如:高度依赖于医护人员的经验知识,耗费大量的时间和精力完成,提取出有区分性的高质量特征也往往存在一定的困难,而且准确率低,本发明借助于卷积神经网络,实现阴道病理图像的高精度分类。
-