抗静电长玻璃纤维增强热塑性复合材料及其制备方法与应用

    公开(公告)号:CN112080075B

    公开(公告)日:2021-06-22

    申请号:CN202011051469.X

    申请日:2020-09-29

    Applicant: 湖南大学

    Abstract: 本发明提供了一种抗静电长玻璃纤维增强热塑性复合材料及其制备方法与应用。抗静电长玻璃纤维增强塑性复合材料以连续玻璃纤维增强体、无规共聚聚丙烯基体、改性无规共聚聚丙烯和双三氟甲烷磺酰亚胺锂静电剂(Li‑TFSI)为原料,经过密炼、熔融挤出、冷却、裁切制备而成。在本发明中,Li‑TFSI通过化学键合被吸附在长玻璃纤维(LGF)表面,LGF相互接触形成的三维导电网络为Li‑TFSI传递电荷提供了导电轨道,进而提高了复合材料体系的抗静电性能。此外,带有功能性基团的Li‑TFSI与纤维及基体表面的基团发生化学键合,进一步提高了纤维与基体之间的界面粘结性,因而拉伸强度显著提高。本发明制备工艺简单,效率高,有效地提高了聚丙烯复合材料的抗静电性能和拉伸强度。

    高韧性长玻纤增强无规共聚聚丙烯复合材料及其制备方法

    公开(公告)号:CN112063092B

    公开(公告)日:2021-09-14

    申请号:CN202010989612.3

    申请日:2020-09-18

    Applicant: 湖南大学

    Abstract: 本发明提供了一种高韧性长玻纤增强无规共聚聚丙烯复合材料及其制备方法。首先,将改性无规共聚聚丙烯与β‑成核剂进行熔融共混得到母料;然后,将母料与改性无规共聚聚丙烯熔融共混得到β‑改性无规共聚聚丙烯基体;最后,将β‑改性无规共聚聚丙烯基体与经硅烷偶联处理过的长玻纤进行熔融共混后挤出成型得到增韧复合材料。本发明通过加入β‑成核剂,来诱导异质成核,令部分基体中的α‑相转变为β‑相;β‑相相对于α‑相晶体韧性更高。因此,本发明的高韧性长玻纤增强无规共聚聚丙烯复合材料在冲击过程中具有更优异的吸能效果。本发明制备工艺简单,效率高,有效地提高了长玻纤增强复合材料的冲击韧性。

    高韧性长玻纤增强无规共聚聚丙烯复合材料及其制备方法

    公开(公告)号:CN112063092A

    公开(公告)日:2020-12-11

    申请号:CN202010989612.3

    申请日:2020-09-18

    Applicant: 湖南大学

    Abstract: 本发明提供了一种高韧性长玻纤增强无规共聚聚丙烯复合材料及其制备方法。首先,将改性无规共聚聚丙烯与β‑成核剂进行熔融共混得到母料;然后,将母料与改性无规共聚聚丙烯熔融共混得到β‑改性无规共聚聚丙烯基体;最后,将β‑改性无规共聚聚丙烯基体与经硅烷偶联处理过的长玻纤进行熔融共混后挤出成型得到增韧复合材料。本发明通过加入β‑成核剂,来诱导异质成核,令部分基体中的α‑相转变为β‑相;β‑相相对于α‑相晶体韧性更高。因此,本发明的高韧性长玻纤增强无规共聚聚丙烯复合材料在冲击过程中具有更优异的吸能效果。本发明制备工艺简单,效率高,有效地提高了长玻纤增强复合材料的冲击韧性。

    抗静电长玻璃纤维增强热塑性复合材料及其制备方法与应用

    公开(公告)号:CN112080075A

    公开(公告)日:2020-12-15

    申请号:CN202011051469.X

    申请日:2020-09-29

    Applicant: 湖南大学

    Abstract: 本发明提供了一种抗静电长玻璃纤维增强热塑性复合材料及其制备方法与应用。抗静电长玻璃纤维增强塑性复合材料以连续玻璃纤维增强体、无规共聚聚丙烯基体、改性无规共聚聚丙烯和双三氟甲烷磺酰亚胺锂静电剂(Li‑TFSI)为原料,经过密炼、熔融挤出、冷却、裁切制备而成。在本发明中,Li‑TFSI通过化学键合被吸附在长玻璃纤维(LGF)表面,LGF相互接触形成的三维导电网络为Li‑TFSI传递电荷提供了导电轨道,进而提高了复合材料体系的抗静电性能。此外,带有功能性基团的Li‑TFSI与纤维及基体表面的基团发生化学键合,进一步提高了纤维与基体之间的界面粘结性,因而拉伸强度显著提高。本发明制备工艺简单,效率高,有效地提高了聚丙烯复合材料的抗静电性能和拉伸强度。

Patent Agency Ranking