-
公开(公告)号:CN113580149A
公开(公告)日:2021-11-02
申请号:CN202111156483.0
申请日:2021-09-30
Applicant: 湖南大学
Abstract: 本发明公开了一种基于关键点预测网络的无序混叠工件抓取方法和系统,输入一张实时RGB图像,通过预设的关键点预测网络模型可以分割出每个工件的位置并预测其关键点位置,从而获得关键点在图像中的像素坐标,结合关键点在工件模型坐标系下的3D坐标以及相机内参,解算工件模型坐标系到相机坐标系之间的转换关系,再结合手眼标定获得相机坐标系到机器人坐标系之间的转换关系,进而求解得到机器人坐标系下工件的6DoF位置及位姿信息。该方法能够在关键点被遮挡的情况下通过投票预测出最可能代表关键点的像素位置,解决了工件混叠情况下关键点被遮挡的位姿计算难题,使机器人能够实现更加复杂场景下的工件拾取功能,有效提高拾取成功率。
-
公开(公告)号:CN113580149B
公开(公告)日:2021-12-21
申请号:CN202111156483.0
申请日:2021-09-30
Applicant: 湖南大学
Abstract: 本发明公开了一种基于关键点预测网络的无序混叠工件抓取方法和系统,输入一张实时RGB图像,通过预设的关键点预测网络模型可以分割出每个工件的位置并预测其关键点位置,从而获得关键点在图像中的像素坐标,结合关键点在工件模型坐标系下的3D坐标以及相机内参,解算工件模型坐标系到相机坐标系之间的转换关系,再结合手眼标定获得相机坐标系到机器人坐标系之间的转换关系,进而求解得到机器人坐标系下工件的6DoF位置及位姿信息。该方法能够在关键点被遮挡的情况下通过投票预测出最可能代表关键点的像素位置,解决了工件混叠情况下关键点被遮挡的位姿计算难题,使机器人能够实现更加复杂场景下的工件拾取功能,有效提高拾取成功率。
-
公开(公告)号:CN114714365B
公开(公告)日:2022-08-23
申请号:CN202210641069.7
申请日:2022-06-08
Applicant: 湖南大学
Abstract: 本发明具体公开了一种基于云平台的无序工件抓取方法及其系统,所述方法包括:搭建硬件系统和云平台;图像采集装置标定获取内参;手眼标定与拾取装置标定;利用预设训练好的实例分割模型获取目标工件的点云信息;将目标工件的点云信息与预设实例模板的点云信息进行ICP配准;算机器人基座坐标系与目标工件坐标系之间的转换矩阵,进而得到目标工件的位姿信息;基于目标工件的位姿信息,通过服务器控制机器人系统对目标工件进行抓取,进而完成目标工件的上料工作。本发明能够有效解决工业场景复杂、存在堆叠现象且采集图像边缘与纹理信息不明显所造成位姿获取难度高的问题。
-
公开(公告)号:CN114714365A
公开(公告)日:2022-07-08
申请号:CN202210641069.7
申请日:2022-06-08
Applicant: 湖南大学
Abstract: 本发明具体公开了一种基于云平台的无序工件抓取方法及其系统,所述方法包括:搭建硬件系统和云平台;图像采集装置标定获取内参;手眼标定与拾取装置标定;利用预设训练好的实例分割模型获取目标工件的点云信息;将目标工件的点云信息与预设实例模板的点云信息进行ICP配准;算机器人基座坐标系与目标工件坐标系之间的转换矩阵,进而得到目标工件的位姿信息;基于目标工件的位姿信息,通过服务器控制机器人系统对目标工件进行抓取,进而完成目标工件的上料工作。本发明能够有效解决工业场景复杂、存在堆叠现象且采集图像边缘与纹理信息不明显所造成位姿获取难度高的问题。
-
-
-