一种基于图像复原的动脉斑块超声图像自监督分割方法

    公开(公告)号:CN113192062A

    公开(公告)日:2021-07-30

    申请号:CN202110573463.7

    申请日:2021-05-25

    Abstract: 本发明提供了一种基于图像复原的动脉斑块超声图像自监督分割方法,包括以下步骤:(1)动脉超声图像训练数据集预处理,(2)训练基于图像复原的自监督辅助任务网络,(3)将(2)获得的辅助任务模型迁移至动脉斑块超声图像分割任务,(4)训练动脉斑块超声图像分割卷积神经网络,(5)利用(4)得到的模型分割动脉斑块超声测试图像,并输出结果。本发明首次公开了基于图像复原的动脉斑块超声图像自监督分割方法,实现在少量标签样本情况下动脉斑块超声图像分割,提升动脉斑块自动测量的准确性。可应用于动脉超声图像辅助诊断系统,监测斑块的生长和消退情况,对心脑血管发生预警有重要意义。

    一种基于自监督学习的运动想象脑电信号分类方法

    公开(公告)号:CN113158949A

    公开(公告)日:2021-07-23

    申请号:CN202110478028.6

    申请日:2021-04-30

    Abstract: 本发明公开一种基于自监督学习的运动想象脑电信号分类方法,包括辅助任务和目标任务学习;在辅助任务学习中,对每条运动想象脑电信号样本分割成多个块,并随机排列组合得到乱序的脑电信号样本,采用卷积神经网络对正序和乱序脑电信号样本分类,得到辅助任务最优模型;在目标任务学习中,将辅助任务最优模型迁移至目标任务网络初始化权重,并采用少量标记样本,更新目标任务网络,得到运动想象脑电信号分类模型;使用该模型对测试样本进行分类,得到分类结果。本发明提出的自监督学习方法,可有效提高目标任务网络的收敛效率,提升运动想象脑电信号分类的准确率。

    一种基于多任务学习的颈动脉斑块超声图像处理方法

    公开(公告)号:CN115861713A

    公开(公告)日:2023-03-28

    申请号:CN202211718722.1

    申请日:2022-12-29

    Abstract: 本发明涉及一种基于多任务学习的颈动脉斑块超声图像处理方法,包括以下步骤:引入颈动脉斑块超声图像数据集,并进行预处理,得到训练数据集;构建多任务网络框架;添加区域权重模块;添加样本权重模块;将训练数据集作为训练样本输入多任务网络进行训练,在测试集上判定斑块类别和预测斑块分割图像。该基于多任务学习的颈动脉斑块超声图像处理方法,通过对多个任务同时进行训练、共享所学习的特征达到输入一次训练样本解决多个问题的目的,如此,提升了深度学习模型泛化能力,使得任务之间互相联动,促进训练效果,提升分割与分类任务的准确度,解决了在颈动脉斑块超声图像领域深度学习模型泛化能力差,学习特征有限的问题。

Patent Agency Ranking